Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,8 +12,6 @@ from gradio_imageslider import ImageSlider
|
|
12 |
from PIL import Image
|
13 |
from huggingface_hub import snapshot_download
|
14 |
import requests
|
15 |
-
import io
|
16 |
-
import base64
|
17 |
|
18 |
# For ESRGAN (requires pip install basicsr gfpgan)
|
19 |
try:
|
@@ -62,7 +60,7 @@ florence_model = AutoModelForCausalLM.from_pretrained(
|
|
62 |
"microsoft/Florence-2-large",
|
63 |
torch_dtype=torch.float16,
|
64 |
trust_remote_code=True,
|
65 |
-
attn_implementation="eager"
|
66 |
).to(device)
|
67 |
florence_processor = AutoProcessor.from_pretrained(
|
68 |
"microsoft/Florence-2-large",
|
@@ -95,15 +93,16 @@ if USE_ESRGAN:
|
|
95 |
esrgan_model.to(device)
|
96 |
|
97 |
MAX_SEED = 1000000
|
98 |
-
MAX_PIXEL_BUDGET = 8192 * 8192
|
|
|
99 |
|
100 |
def generate_caption(image):
|
101 |
"""Generate detailed caption using Florence-2"""
|
102 |
try:
|
103 |
task_prompt = "<MORE_DETAILED_CAPTION>"
|
104 |
prompt = task_prompt
|
|
|
105 |
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to(device)
|
106 |
-
inputs["pixel_values"] = inputs["pixel_values"].to(torch.float16)
|
107 |
|
108 |
generated_ids = florence_model.generate(
|
109 |
input_ids=inputs["input_ids"],
|
@@ -122,10 +121,13 @@ def generate_caption(image):
|
|
122 |
print(f"Caption generation failed: {e}")
|
123 |
return "a high quality detailed image"
|
124 |
|
|
|
125 |
def process_input(input_image, upscale_factor):
|
126 |
"""Process input image and handle size constraints"""
|
127 |
w, h = input_image.size
|
128 |
w_original, h_original = w, h
|
|
|
|
|
129 |
was_resized = False
|
130 |
|
131 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
@@ -144,19 +146,17 @@ def process_input(input_image, upscale_factor):
|
|
144 |
|
145 |
return input_image, w_original, h_original, was_resized
|
146 |
|
|
|
147 |
def load_image_from_url(url):
|
148 |
-
"""Load image from URL
|
149 |
try:
|
150 |
response = requests.get(url, stream=True)
|
151 |
response.raise_for_status()
|
152 |
-
|
153 |
-
buffer = io.BytesIO()
|
154 |
-
img.save(buffer, format="PNG")
|
155 |
-
buffer.seek(0)
|
156 |
-
return Image.open(buffer)
|
157 |
except Exception as e:
|
158 |
raise gr.Error(f"Failed to load image from URL: {e}")
|
159 |
|
|
|
160 |
def esrgan_upscale(image, scale=4):
|
161 |
if not USE_ESRGAN:
|
162 |
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
|
@@ -166,18 +166,11 @@ def esrgan_upscale(image, scale=4):
|
|
166 |
output_img = tensor2img(output, rgb2bgr=False, min_max=(0, 1))
|
167 |
return Image.fromarray(output_img)
|
168 |
|
|
|
169 |
def tiled_flux_img2img(pipe, prompt, image, strength, steps, guidance, generator, tile_size=1024, overlap=32):
|
170 |
"""Tiled Img2Img to mimic Ultimate SD Upscaler tiling"""
|
171 |
w, h = image.size
|
172 |
-
output = image.copy()
|
173 |
-
|
174 |
-
max_clip_tokens = pipe.tokenizer.model_max_length
|
175 |
-
input_ids = pipe.tokenizer.encode(prompt, return_tensors="pt")
|
176 |
-
if input_ids.shape[1] > max_clip_tokens:
|
177 |
-
input_ids = input_ids[:, :max_clip_tokens]
|
178 |
-
prompt_clip = pipe.tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
179 |
-
else:
|
180 |
-
prompt_clip = prompt
|
181 |
|
182 |
for x in range(0, w, tile_size - overlap):
|
183 |
for y in range(0, h, tile_size - overlap):
|
@@ -185,9 +178,9 @@ def tiled_flux_img2img(pipe, prompt, image, strength, steps, guidance, generator
|
|
185 |
tile_h = min(tile_size, h - y)
|
186 |
tile = image.crop((x, y, x + tile_w, y + tile_h))
|
187 |
|
|
|
188 |
gen_tile = pipe(
|
189 |
-
prompt=
|
190 |
-
prompt_2=prompt,
|
191 |
image=tile,
|
192 |
strength=strength,
|
193 |
num_inference_steps=steps,
|
@@ -197,21 +190,19 @@ def tiled_flux_img2img(pipe, prompt, image, strength, steps, guidance, generator
|
|
197 |
generator=generator,
|
198 |
).images[0]
|
199 |
|
200 |
-
|
201 |
-
|
202 |
if overlap > 0:
|
203 |
paste_box = (x, y, x + tile_w, y + tile_h)
|
204 |
if x > 0 or y > 0:
|
|
|
205 |
mask = Image.new('L', (tile_w, tile_h), 255)
|
206 |
if x > 0:
|
207 |
-
|
208 |
-
for i in range(blend_width):
|
209 |
for j in range(tile_h):
|
210 |
mask.putpixel((i, j), int(255 * (i / overlap)))
|
211 |
if y > 0:
|
212 |
-
blend_height = min(overlap, tile_h)
|
213 |
for i in range(tile_w):
|
214 |
-
for j in range(
|
215 |
mask.putpixel((i, j), int(255 * (j / overlap)))
|
216 |
output.paste(gen_tile, paste_box, mask)
|
217 |
else:
|
@@ -221,19 +212,12 @@ def tiled_flux_img2img(pipe, prompt, image, strength, steps, guidance, generator
|
|
221 |
|
222 |
return output
|
223 |
|
224 |
-
def download_png(image):
|
225 |
-
"""Convert image to PNG and return base64 string for download"""
|
226 |
-
if image is None:
|
227 |
-
raise gr.Error("No upscaled image available to download")
|
228 |
-
buffer = io.BytesIO()
|
229 |
-
image.save(buffer, format="PNG")
|
230 |
-
base64_data = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
231 |
-
return base64_data
|
232 |
|
233 |
@spaces.GPU(duration=120)
|
234 |
def enhance_image(
|
235 |
image_input,
|
236 |
image_url,
|
|
|
237 |
randomize_seed,
|
238 |
num_inference_steps,
|
239 |
upscale_factor,
|
@@ -243,11 +227,9 @@ def enhance_image(
|
|
243 |
progress=gr.Progress(track_tqdm=True),
|
244 |
):
|
245 |
"""Main enhancement function"""
|
|
|
246 |
if image_input is not None:
|
247 |
-
|
248 |
-
image_input.save(buffer, format="PNG")
|
249 |
-
buffer.seek(0)
|
250 |
-
input_image = Image.open(buffer)
|
251 |
elif image_url:
|
252 |
input_image = load_image_from_url(image_url)
|
253 |
else:
|
@@ -255,15 +237,15 @@ def enhance_image(
|
|
255 |
|
256 |
if randomize_seed:
|
257 |
seed = random.randint(0, MAX_SEED)
|
258 |
-
else:
|
259 |
-
seed = 42
|
260 |
|
261 |
true_input_image = input_image
|
262 |
|
|
|
263 |
input_image, w_original, h_original, was_resized = process_input(
|
264 |
input_image, upscale_factor
|
265 |
)
|
266 |
|
|
|
267 |
if use_generated_caption:
|
268 |
gr.Info("π Generating image caption...")
|
269 |
generated_caption = generate_caption(input_image)
|
@@ -275,19 +257,21 @@ def enhance_image(
|
|
275 |
|
276 |
gr.Info("π Upscaling image...")
|
277 |
|
|
|
278 |
if USE_ESRGAN and upscale_factor == 4:
|
279 |
control_image = esrgan_upscale(input_image, upscale_factor)
|
280 |
else:
|
281 |
w, h = input_image.size
|
282 |
control_image = input_image.resize((w * upscale_factor, h * upscale_factor), resample=Image.LANCZOS)
|
283 |
|
|
|
284 |
image = tiled_flux_img2img(
|
285 |
pipe,
|
286 |
prompt,
|
287 |
control_image,
|
288 |
denoising_strength,
|
289 |
num_inference_steps,
|
290 |
-
1.0,
|
291 |
generator,
|
292 |
tile_size=1024,
|
293 |
overlap=32
|
@@ -297,16 +281,18 @@ def enhance_image(
|
|
297 |
gr.Info(f"π Resizing output to target size: {w_original * upscale_factor}x{h_original * upscale_factor}")
|
298 |
image = image.resize((w_original * upscale_factor, h_original * upscale_factor), resample=Image.LANCZOS)
|
299 |
|
|
|
300 |
resized_input = true_input_image.resize(image.size, resample=Image.LANCZOS)
|
301 |
|
302 |
-
return [resized_input, image]
|
|
|
303 |
|
304 |
# Create Gradio interface
|
305 |
-
with gr.Blocks(css=css, title="π¨
|
306 |
gr.HTML("""
|
307 |
<div class="main-header">
|
308 |
-
<h1>π¨
|
309 |
-
<p>Upload an image or provide a URL to upscale it using Florence-2 captioning and FLUX
|
310 |
<p>Currently running on <strong>{}</strong></p>
|
311 |
</div>
|
312 |
""".format(power_device))
|
@@ -320,7 +306,7 @@ with gr.Blocks(css=css, title="π¨ Flux dev Creative Upscaler - Florence-2 + FL
|
|
320 |
input_image = gr.Image(
|
321 |
label="Upload Image",
|
322 |
type="pil",
|
323 |
-
height=200
|
324 |
)
|
325 |
|
326 |
with gr.TabItem("π Image URL"):
|
@@ -356,7 +342,7 @@ with gr.Blocks(css=css, title="π¨ Flux dev Creative Upscaler - Florence-2 + FL
|
|
356 |
)
|
357 |
|
358 |
num_inference_steps = gr.Slider(
|
359 |
-
label="
|
360 |
minimum=8,
|
361 |
maximum=50,
|
362 |
step=1,
|
@@ -365,7 +351,7 @@ with gr.Blocks(css=css, title="π¨ Flux dev Creative Upscaler - Florence-2 + FL
|
|
365 |
)
|
366 |
|
367 |
denoising_strength = gr.Slider(
|
368 |
-
label="
|
369 |
minimum=0.0,
|
370 |
maximum=1.0,
|
371 |
step=0.05,
|
@@ -378,6 +364,14 @@ with gr.Blocks(css=css, title="π¨ Flux dev Creative Upscaler - Florence-2 + FL
|
|
378 |
label="Randomize seed",
|
379 |
value=True
|
380 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
|
382 |
enhance_btn = gr.Button(
|
383 |
"π Upscale Image",
|
@@ -385,35 +379,24 @@ with gr.Blocks(css=css, title="π¨ Flux dev Creative Upscaler - Florence-2 + FL
|
|
385 |
size="lg"
|
386 |
)
|
387 |
|
388 |
-
with gr.Column(scale=2):
|
389 |
gr.HTML("<h3>π Results</h3>")
|
390 |
|
391 |
result_slider = ImageSlider(
|
392 |
type="pil",
|
393 |
-
interactive=False,
|
394 |
-
height=600,
|
395 |
elem_id="result_slider",
|
396 |
-
label=None
|
397 |
-
)
|
398 |
-
|
399 |
-
download_btn = gr.Button(
|
400 |
-
"π₯ Download as PNG",
|
401 |
-
variant="secondary",
|
402 |
-
size="lg"
|
403 |
)
|
404 |
|
405 |
-
#
|
406 |
-
upscaled_image_state = gr.State()
|
407 |
-
|
408 |
-
# Hidden textbox for base64 data
|
409 |
-
download_data = gr.Textbox(visible=False, elem_id="download_data")
|
410 |
-
|
411 |
-
# Event handlers
|
412 |
enhance_btn.click(
|
413 |
fn=enhance_image,
|
414 |
inputs=[
|
415 |
input_image,
|
416 |
image_url,
|
|
|
417 |
randomize_seed,
|
418 |
num_inference_steps,
|
419 |
upscale_factor,
|
@@ -421,13 +404,7 @@ with gr.Blocks(css=css, title="π¨ Flux dev Creative Upscaler - Florence-2 + FL
|
|
421 |
use_generated_caption,
|
422 |
custom_prompt,
|
423 |
],
|
424 |
-
outputs=[result_slider
|
425 |
-
)
|
426 |
-
|
427 |
-
download_btn.click(
|
428 |
-
fn=download_png,
|
429 |
-
inputs=[upscaled_image_state],
|
430 |
-
outputs=download_data
|
431 |
)
|
432 |
|
433 |
gr.HTML("""
|
@@ -436,6 +413,7 @@ with gr.Blocks(css=css, title="π¨ Flux dev Creative Upscaler - Florence-2 + FL
|
|
436 |
</div>
|
437 |
""")
|
438 |
|
|
|
439 |
gr.HTML("""
|
440 |
<style>
|
441 |
#result_slider .slider {
|
@@ -489,6 +467,7 @@ with gr.Blocks(css=css, title="π¨ Flux dev Creative Upscaler - Florence-2 + FL
|
|
489 |
</style>
|
490 |
""")
|
491 |
|
|
|
492 |
gr.HTML("""
|
493 |
<script>
|
494 |
document.addEventListener('DOMContentLoaded', function() {
|
@@ -497,31 +476,6 @@ with gr.Blocks(css=css, title="π¨ Flux dev Creative Upscaler - Florence-2 + FL
|
|
497 |
sliderInput.value = 50;
|
498 |
sliderInput.dispatchEvent(new Event('input'));
|
499 |
}
|
500 |
-
|
501 |
-
const downloadData = document.querySelector('#download_data textarea');
|
502 |
-
if (downloadData) {
|
503 |
-
const observer = new MutationObserver(() => {
|
504 |
-
const base64 = downloadData.value;
|
505 |
-
if (base64) {
|
506 |
-
const byteCharacters = atob(base64);
|
507 |
-
const byteNumbers = new Array(byteCharacters.length);
|
508 |
-
for (let i = 0; i < byteCharacters.length; i++) {
|
509 |
-
byteNumbers[i] = byteCharacters.charCodeAt(i);
|
510 |
-
}
|
511 |
-
const byteArray = new Uint8Array(byteNumbers);
|
512 |
-
const blob = new Blob([byteArray], {type: 'image/png'});
|
513 |
-
const url = URL.createObjectURL(blob);
|
514 |
-
const a = document.createElement('a');
|
515 |
-
a.href = url;
|
516 |
-
a.download = 'upscaled_image.png';
|
517 |
-
a.click();
|
518 |
-
URL.revokeObjectURL(url);
|
519 |
-
// Clear the textbox
|
520 |
-
downloadData.value = '';
|
521 |
-
}
|
522 |
-
});
|
523 |
-
observer.observe(downloadData, {childList: true, subtree: true, characterData: true});
|
524 |
-
}
|
525 |
});
|
526 |
</script>
|
527 |
""")
|
|
|
12 |
from PIL import Image
|
13 |
from huggingface_hub import snapshot_download
|
14 |
import requests
|
|
|
|
|
15 |
|
16 |
# For ESRGAN (requires pip install basicsr gfpgan)
|
17 |
try:
|
|
|
60 |
"microsoft/Florence-2-large",
|
61 |
torch_dtype=torch.float16,
|
62 |
trust_remote_code=True,
|
63 |
+
attn_implementation="eager" # Fix for SDPA compatibility issue
|
64 |
).to(device)
|
65 |
florence_processor = AutoProcessor.from_pretrained(
|
66 |
"microsoft/Florence-2-large",
|
|
|
93 |
esrgan_model.to(device)
|
94 |
|
95 |
MAX_SEED = 1000000
|
96 |
+
MAX_PIXEL_BUDGET = 8192 * 8192 # Increased for tiling support
|
97 |
+
|
98 |
|
99 |
def generate_caption(image):
|
100 |
"""Generate detailed caption using Florence-2"""
|
101 |
try:
|
102 |
task_prompt = "<MORE_DETAILED_CAPTION>"
|
103 |
prompt = task_prompt
|
104 |
+
|
105 |
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to(device)
|
|
|
106 |
|
107 |
generated_ids = florence_model.generate(
|
108 |
input_ids=inputs["input_ids"],
|
|
|
121 |
print(f"Caption generation failed: {e}")
|
122 |
return "a high quality detailed image"
|
123 |
|
124 |
+
|
125 |
def process_input(input_image, upscale_factor):
|
126 |
"""Process input image and handle size constraints"""
|
127 |
w, h = input_image.size
|
128 |
w_original, h_original = w, h
|
129 |
+
aspect_ratio = w / h
|
130 |
+
|
131 |
was_resized = False
|
132 |
|
133 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
|
|
146 |
|
147 |
return input_image, w_original, h_original, was_resized
|
148 |
|
149 |
+
|
150 |
def load_image_from_url(url):
|
151 |
+
"""Load image from URL"""
|
152 |
try:
|
153 |
response = requests.get(url, stream=True)
|
154 |
response.raise_for_status()
|
155 |
+
return Image.open(response.raw)
|
|
|
|
|
|
|
|
|
156 |
except Exception as e:
|
157 |
raise gr.Error(f"Failed to load image from URL: {e}")
|
158 |
|
159 |
+
|
160 |
def esrgan_upscale(image, scale=4):
|
161 |
if not USE_ESRGAN:
|
162 |
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
|
|
|
166 |
output_img = tensor2img(output, rgb2bgr=False, min_max=(0, 1))
|
167 |
return Image.fromarray(output_img)
|
168 |
|
169 |
+
|
170 |
def tiled_flux_img2img(pipe, prompt, image, strength, steps, guidance, generator, tile_size=1024, overlap=32):
|
171 |
"""Tiled Img2Img to mimic Ultimate SD Upscaler tiling"""
|
172 |
w, h = image.size
|
173 |
+
output = image.copy() # Start with the control image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
for x in range(0, w, tile_size - overlap):
|
176 |
for y in range(0, h, tile_size - overlap):
|
|
|
178 |
tile_h = min(tile_size, h - y)
|
179 |
tile = image.crop((x, y, x + tile_w, y + tile_h))
|
180 |
|
181 |
+
# Run Flux on tile
|
182 |
gen_tile = pipe(
|
183 |
+
prompt=prompt,
|
|
|
184 |
image=tile,
|
185 |
strength=strength,
|
186 |
num_inference_steps=steps,
|
|
|
190 |
generator=generator,
|
191 |
).images[0]
|
192 |
|
193 |
+
# Paste with blending if overlap
|
|
|
194 |
if overlap > 0:
|
195 |
paste_box = (x, y, x + tile_w, y + tile_h)
|
196 |
if x > 0 or y > 0:
|
197 |
+
# Simple linear blend on overlaps
|
198 |
mask = Image.new('L', (tile_w, tile_h), 255)
|
199 |
if x > 0:
|
200 |
+
for i in range(overlap):
|
|
|
201 |
for j in range(tile_h):
|
202 |
mask.putpixel((i, j), int(255 * (i / overlap)))
|
203 |
if y > 0:
|
|
|
204 |
for i in range(tile_w):
|
205 |
+
for j in range(overlap):
|
206 |
mask.putpixel((i, j), int(255 * (j / overlap)))
|
207 |
output.paste(gen_tile, paste_box, mask)
|
208 |
else:
|
|
|
212 |
|
213 |
return output
|
214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
@spaces.GPU(duration=120)
|
217 |
def enhance_image(
|
218 |
image_input,
|
219 |
image_url,
|
220 |
+
seed,
|
221 |
randomize_seed,
|
222 |
num_inference_steps,
|
223 |
upscale_factor,
|
|
|
227 |
progress=gr.Progress(track_tqdm=True),
|
228 |
):
|
229 |
"""Main enhancement function"""
|
230 |
+
# Handle image input
|
231 |
if image_input is not None:
|
232 |
+
input_image = image_input
|
|
|
|
|
|
|
233 |
elif image_url:
|
234 |
input_image = load_image_from_url(image_url)
|
235 |
else:
|
|
|
237 |
|
238 |
if randomize_seed:
|
239 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
240 |
|
241 |
true_input_image = input_image
|
242 |
|
243 |
+
# Process input image
|
244 |
input_image, w_original, h_original, was_resized = process_input(
|
245 |
input_image, upscale_factor
|
246 |
)
|
247 |
|
248 |
+
# Generate caption if requested
|
249 |
if use_generated_caption:
|
250 |
gr.Info("π Generating image caption...")
|
251 |
generated_caption = generate_caption(input_image)
|
|
|
257 |
|
258 |
gr.Info("π Upscaling image...")
|
259 |
|
260 |
+
# Initial upscale
|
261 |
if USE_ESRGAN and upscale_factor == 4:
|
262 |
control_image = esrgan_upscale(input_image, upscale_factor)
|
263 |
else:
|
264 |
w, h = input_image.size
|
265 |
control_image = input_image.resize((w * upscale_factor, h * upscale_factor), resample=Image.LANCZOS)
|
266 |
|
267 |
+
# Tiled Flux Img2Img for refinement
|
268 |
image = tiled_flux_img2img(
|
269 |
pipe,
|
270 |
prompt,
|
271 |
control_image,
|
272 |
denoising_strength,
|
273 |
num_inference_steps,
|
274 |
+
1.0, # Hardcoded guidance_scale to 1
|
275 |
generator,
|
276 |
tile_size=1024,
|
277 |
overlap=32
|
|
|
281 |
gr.Info(f"π Resizing output to target size: {w_original * upscale_factor}x{h_original * upscale_factor}")
|
282 |
image = image.resize((w_original * upscale_factor, h_original * upscale_factor), resample=Image.LANCZOS)
|
283 |
|
284 |
+
# Resize input image to match output size for slider alignment
|
285 |
resized_input = true_input_image.resize(image.size, resample=Image.LANCZOS)
|
286 |
|
287 |
+
return [resized_input, image]
|
288 |
+
|
289 |
|
290 |
# Create Gradio interface
|
291 |
+
with gr.Blocks(css=css, title="π¨ AI Image Upscaler - Florence-2 + FLUX") as demo:
|
292 |
gr.HTML("""
|
293 |
<div class="main-header">
|
294 |
+
<h1>π¨ AI Image Upscaler</h1>
|
295 |
+
<p>Upload an image or provide a URL to upscale it using Florence-2 captioning and FLUX upscaling</p>
|
296 |
<p>Currently running on <strong>{}</strong></p>
|
297 |
</div>
|
298 |
""".format(power_device))
|
|
|
306 |
input_image = gr.Image(
|
307 |
label="Upload Image",
|
308 |
type="pil",
|
309 |
+
height=200 # Made smaller
|
310 |
)
|
311 |
|
312 |
with gr.TabItem("π Image URL"):
|
|
|
342 |
)
|
343 |
|
344 |
num_inference_steps = gr.Slider(
|
345 |
+
label="Number of Inference Steps",
|
346 |
minimum=8,
|
347 |
maximum=50,
|
348 |
step=1,
|
|
|
351 |
)
|
352 |
|
353 |
denoising_strength = gr.Slider(
|
354 |
+
label="Denoising Strength",
|
355 |
minimum=0.0,
|
356 |
maximum=1.0,
|
357 |
step=0.05,
|
|
|
364 |
label="Randomize seed",
|
365 |
value=True
|
366 |
)
|
367 |
+
seed = gr.Slider(
|
368 |
+
label="Seed",
|
369 |
+
minimum=0,
|
370 |
+
maximum=MAX_SEED,
|
371 |
+
step=1,
|
372 |
+
value=42,
|
373 |
+
interactive=True
|
374 |
+
)
|
375 |
|
376 |
enhance_btn = gr.Button(
|
377 |
"π Upscale Image",
|
|
|
379 |
size="lg"
|
380 |
)
|
381 |
|
382 |
+
with gr.Column(scale=2): # Larger scale for results
|
383 |
gr.HTML("<h3>π Results</h3>")
|
384 |
|
385 |
result_slider = ImageSlider(
|
386 |
type="pil",
|
387 |
+
interactive=False, # Disable interactivity to prevent uploads
|
388 |
+
height=600, # Made larger
|
389 |
elem_id="result_slider",
|
390 |
+
label=None # Remove default label
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
)
|
392 |
|
393 |
+
# Event handler
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
enhance_btn.click(
|
395 |
fn=enhance_image,
|
396 |
inputs=[
|
397 |
input_image,
|
398 |
image_url,
|
399 |
+
seed,
|
400 |
randomize_seed,
|
401 |
num_inference_steps,
|
402 |
upscale_factor,
|
|
|
404 |
use_generated_caption,
|
405 |
custom_prompt,
|
406 |
],
|
407 |
+
outputs=[result_slider]
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
)
|
409 |
|
410 |
gr.HTML("""
|
|
|
413 |
</div>
|
414 |
""")
|
415 |
|
416 |
+
# Custom CSS for slider
|
417 |
gr.HTML("""
|
418 |
<style>
|
419 |
#result_slider .slider {
|
|
|
467 |
</style>
|
468 |
""")
|
469 |
|
470 |
+
# JS to set slider default position to middle
|
471 |
gr.HTML("""
|
472 |
<script>
|
473 |
document.addEventListener('DOMContentLoaded', function() {
|
|
|
476 |
sliderInput.value = 50;
|
477 |
sliderInput.dispatchEvent(new Event('input'));
|
478 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
});
|
480 |
</script>
|
481 |
""")
|