File size: 8,672 Bytes
6b91eb5 d3ad561 6b91eb5 b6cf19e 6b91eb5 d3ad561 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
---
title: Multimodal AI Backend Service
emoji: π
colorFrom: yellow
colorTo: purple
sdk: docker
app_port: 8000
pinned: false
---
# firstAI - Multimodal AI Backend π
A powerful AI backend service with **multimodal capabilities** - supporting both text generation and image analysis using transformers pipelines.
## π Features
### π€ Dual AI Models
- **Text Generation**: Microsoft DialoGPT-medium for conversations
- **Image Analysis**: Salesforce BLIP for image captioning and visual Q&A
### πΌοΈ Multimodal Support
- Process text-only messages
- Analyze images from URLs
- Combined image + text conversations
- OpenAI Vision API compatible format
### π§ Production Ready
- FastAPI backend with automatic docs
- Comprehensive error handling
- Health checks and monitoring
- PyTorch with MPS acceleration (Apple Silicon)
## π Quick Start
### 1. Install Dependencies
```bash
pip install -r requirements.txt
```
### 2. Start the Service
```bash
python backend_service.py
```
### 3. Test Multimodal Capabilities
```bash
python test_final.py
```
The service will start on **http://localhost:8001** with both text and vision models loaded.
## π‘ Usage Examples
### Text-Only Chat
```bash
curl -X POST http://localhost:8001/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "microsoft/DialoGPT-medium",
"messages": [{"role": "user", "content": "Hello!"}]
}'
```
### Image Analysis
```bash
curl -X POST http://localhost:8001/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Salesforce/blip-image-captioning-base",
"messages": [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://example.com/image.jpg"
}
]
}
]
}'
```
### Multimodal (Image + Text)
```bash
curl -X POST http://localhost:8001/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Salesforce/blip-image-captioning-base",
"messages": [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://example.com/image.jpg"
},
{
"type": "text",
"text": "What do you see in this image?"
}
]
}
]
}'
```
## π§ Technical Details
### Architecture
- **FastAPI** web framework
- **Transformers** pipeline for AI models
- **PyTorch** backend with GPU/MPS support
- **Pydantic** for request/response validation
### Models
- **Text**: microsoft/DialoGPT-medium
- **Vision**: Salesforce/blip-image-captioning-base
### API Endpoints
- `GET /` - Service information
- `GET /health` - Health check
- `GET /v1/models` - List available models
- `POST /v1/chat/completions` - Chat completions (text/multimodal)
- `GET /docs` - Interactive API documentation
## π§ͺ Testing
Run the comprehensive test suite:
```bash
python test_final.py
```
Test individual components:
```bash
python test_multimodal.py # Basic multimodal tests
python test_pipeline.py # Pipeline compatibility
```
## π¦ Dependencies
Key packages:
- `fastapi` - Web framework
- `transformers` - AI model pipelines
- `torch` - PyTorch backend
- `Pillow` - Image processing
- `accelerate` - Model acceleration
- `requests` - HTTP client
## π― Integration Complete
This project successfully integrates:
β
**Transformers image-text-to-text pipeline**
β
**OpenAI Vision API compatibility**
β
**Multimodal message processing**
β
**Production-ready FastAPI service**
See `MULTIMODAL_INTEGRATION_COMPLETE.md` for detailed integration documentation.
- PyTorch with MPS acceleration (Apple Silicon) AI Backend Service
emoji: οΏ½
colorFrom: yellow
colorTo: purple
sdk: fastapi
sdk_version: 0.100.0
app_file: backend_service.py
pinned: false
---
# AI Backend Service π
**Status: β
CONVERSION COMPLETE!**
Successfully converted from a non-functioning Gradio HuggingFace app to a production-ready FastAPI backend service with OpenAI-compatible API endpoints.
## Quick Start
### 1. Setup Environment
```bash
# Activate the virtual environment
source gradio_env/bin/activate
# Install dependencies (already done)
pip install -r requirements.txt
```
### 2. Start the Backend Service
```bash
python backend_service.py --port 8000 --reload
```
### 3. Test the API
```bash
# Run comprehensive tests
python test_api.py
# Or try usage examples
python usage_examples.py
```
## API Endpoints
| Endpoint | Method | Description |
| ---------------------- | ------ | ----------------------------------- |
| `/` | GET | Service information |
| `/health` | GET | Health check |
| `/v1/models` | GET | List available models |
| `/v1/chat/completions` | POST | Chat completion (OpenAI compatible) |
| `/v1/completions` | POST | Text completion |
## Example Usage
### Chat Completion
```bash
curl -X POST http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "microsoft/DialoGPT-medium",
"messages": [
{"role": "user", "content": "Hello! How are you?"}
],
"max_tokens": 150,
"temperature": 0.7
}'
```
### Streaming Chat
```bash
curl -X POST http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "microsoft/DialoGPT-medium",
"messages": [
{"role": "user", "content": "Tell me a joke"}
],
"stream": true
}'
```
## Files
- **`app.py`** - Original Gradio ChatInterface (still functional)
- **`backend_service.py`** - New FastAPI backend service β
- **`test_api.py`** - Comprehensive API testing
- **`usage_examples.py`** - Simple usage examples
- **`requirements.txt`** - Updated dependencies
- **`CONVERSION_COMPLETE.md`** - Detailed conversion documentation
## Features
β
**OpenAI-Compatible API** - Drop-in replacement for OpenAI API
β
**Async FastAPI** - High-performance async architecture
β
**Streaming Support** - Real-time response streaming
β
**Error Handling** - Robust error handling with fallbacks
β
**Production Ready** - CORS, logging, health checks
β
**Docker Ready** - Easy containerization
β
**Auto-reload** - Development-friendly auto-reload
β
**Type Safety** - Full type hints with Pydantic validation
## Service URLs
- **Backend Service**: http://localhost:8000
- **API Documentation**: http://localhost:8000/docs
- **OpenAPI Spec**: http://localhost:8000/openapi.json
## Model Information
- **Current Model**: `microsoft/DialoGPT-medium`
- **Type**: Conversational AI model
- **Provider**: HuggingFace Inference API
- **Capabilities**: Text generation, chat completion
## Architecture
```
βββββββββββββββββββββββ ββββββββββββββββββββββββ βββββββββββββββββββββββ
β Client Request βββββΆβ FastAPI Backend βββββΆβ HuggingFace API β
β (OpenAI format) β β (backend_service) β β (DialoGPT-medium) β
βββββββββββββββββββββββ ββββββββββββββββββββββββ βββββββββββββββββββββββ
β
βΌ
ββββββββββββββββββββββββ
β OpenAI Response β
β (JSON/Streaming) β
ββββββββββββββββββββββββ
```
## Development
The service includes:
- **Auto-reload** for development
- **Comprehensive logging** for debugging
- **Type checking** for code quality
- **Test suite** for reliability
- **Error handling** for robustness
## Production Deployment
Ready for production with:
- **Environment variables** for configuration
- **Health check endpoints** for monitoring
- **CORS support** for web applications
- **Docker compatibility** for containerization
- **Structured logging** for observability
---
**π Conversion Status: COMPLETE!**
Successfully transformed from broken Gradio app to production-ready AI backend service.
For detailed conversion documentation, see [`CONVERSION_COMPLETE.md`](CONVERSION_COMPLETE.md).
|