File size: 17,315 Bytes
375ade4 78b611a 375ade4 78b611a 375ade4 78b611a 375ade4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
#!/usr/bin/env python3
"""
Working Gemma 3n GGUF Backend Service
Minimal FastAPI backend using only llama-cpp-python for GGUF models
"""
import os
import logging
import time
from contextlib import asynccontextmanager
from typing import List, Dict, Any, Optional
import uuid
import sys
import subprocess
import threading
from pathlib import Path
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field, field_validator
# Import llama-cpp-python for GGUF model support
try:
from llama_cpp import Llama
llama_cpp_available = True
except ImportError:
llama_cpp_available = False
import uvicorn
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Pydantic models for OpenAI-compatible API
class ChatMessage(BaseModel):
role: str = Field(..., description="The role of the message author")
content: str = Field(..., description="The content of the message")
@field_validator('role')
@classmethod
def validate_role(cls, v: str) -> str:
if v not in ["system", "user", "assistant"]:
raise ValueError("Role must be one of: system, user, assistant")
return v
class ChatCompletionRequest(BaseModel):
model: str = Field(default="gemma-3n-e4b-it", description="The model to use for completion")
messages: List[ChatMessage] = Field(..., description="List of messages in the conversation")
max_tokens: Optional[int] = Field(default=512, ge=1, le=2048, description="Maximum tokens to generate")
temperature: Optional[float] = Field(default=1.0, ge=0.0, le=2.0, description="Sampling temperature")
top_p: Optional[float] = Field(default=0.95, ge=0.0, le=1.0, description="Top-p sampling")
top_k: Optional[int] = Field(default=64, ge=1, le=100, description="Top-k sampling")
stream: Optional[bool] = Field(default=False, description="Whether to stream responses")
class ChatCompletionChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: str
class ChatCompletionResponse(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[ChatCompletionChoice]
class HealthResponse(BaseModel):
status: str
model: str
version: str
backend: str
# Global variables for model management
current_model = os.environ.get("AI_MODEL", "unsloth/gemma-3n-E4B-it-GGUF")
llm = None
def convert_messages_to_gemma_prompt(messages: List[ChatMessage]) -> str:
"""Convert OpenAI messages format to Gemma 3n chat format."""
# Gemma 3n uses specific format with <start_of_turn> and <end_of_turn>
prompt_parts = ["<bos>"]
for message in messages:
role = message.role
content = message.content
if role == "system":
prompt_parts.append(f"<start_of_turn>system\n{content}<end_of_turn>")
elif role == "user":
prompt_parts.append(f"<start_of_turn>user\n{content}<end_of_turn>")
elif role == "assistant":
prompt_parts.append(f"<start_of_turn>model\n{content}<end_of_turn>")
# Add the start for model response
prompt_parts.append("<start_of_turn>model\n")
return "\n".join(prompt_parts)
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan manager for startup and shutdown events"""
global llm
logger.info("π Starting Gemma 3n GGUF Backend Service...")
if os.environ.get("DEMO_MODE", "").strip() not in ("", "0", "false", "False"):
logger.info("π§ͺ DEMO_MODE enabled: skipping model load")
llm = None
yield
logger.info("π Shutting down Gemma 3n Backend Service (demo mode)...")
return
if not llama_cpp_available:
logger.error("β llama-cpp-python is not available. Please install with: pip install llama-cpp-python")
raise RuntimeError("llama-cpp-python not available")
try:
logger.info(f"π₯ Loading Gemma 3n GGUF model from {current_model}...")
# Configure model parameters for Gemma 3n
llm = Llama.from_pretrained(
repo_id=current_model,
filename="*Q4_K_M.gguf", # Use Q4_K_M quantization for good performance
verbose=True,
# Gemma 3n specific settings
n_ctx=4096, # Start with 4K context (can be increased to 32K)
n_threads=4, # Adjust based on your CPU
n_gpu_layers=-1, # Use all GPU layers if CUDA available, otherwise CPU
# Chat template for Gemma 3n format
chat_format="gemma", # Try built-in gemma format first
)
logger.info("β
Successfully loaded Gemma 3n GGUF model")
except Exception as e:
logger.error(f"β Failed to initialize Gemma 3n model: {e}")
logger.warning("β οΈ Please download the GGUF model file locally and update the path")
logger.warning("β οΈ You can download from: https://huggingface.co/unsloth/gemma-3n-E4B-it-GGUF")
# For demo purposes, we'll continue without the model
logger.info("π Starting service in demo mode (responses will be mocked)")
yield
logger.info("π Shutting down Gemma 3n Backend Service...")
if llm:
# Clean up model resources
llm = None
# Initialize FastAPI app
app = FastAPI(
title="Gemma 3n GGUF Backend Service",
description="OpenAI-compatible chat completion API powered by Gemma-3n-E4B-it-GGUF",
version="1.0.0",
lifespan=lifespan
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure appropriately for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def ensure_model_ready():
"""Check if model is loaded and ready"""
# For demo mode, we'll allow the service to run even without a model
pass
def generate_response_gguf(messages: List[ChatMessage], max_tokens: int = 512, temperature: float = 1.0, top_p: float = 0.95, top_k: int = 64) -> str:
"""Generate response using GGUF model via llama-cpp-python."""
if llm is None:
# Demo mode response
return "π€ Demo mode: Gemma 3n model not loaded. This would be a real response from the Gemma 3n model. Please download the GGUF model from https://huggingface.co/unsloth/gemma-3n-E4B-it-GGUF"
try:
# Use the chat completion method if available
if hasattr(llm, 'create_chat_completion'):
# Convert to dict format for llama-cpp-python
messages_dict = [{"role": msg.role, "content": msg.content} for msg in messages]
response = llm.create_chat_completion(
messages=messages_dict,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
stop=["<end_of_turn>", "<eos>", "</s>"] # Gemma 3n stop tokens
)
return response['choices'][0]['message']['content'].strip()
else:
# Fallback to direct prompt completion
prompt = convert_messages_to_gemma_prompt(messages)
response = llm(
prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
stop=["<end_of_turn>", "<eos>", "</s>"],
echo=False
)
return response['choices'][0]['text'].strip()
except Exception as e:
logger.error(f"GGUF generation failed: {e}")
return "I apologize, but I'm having trouble generating a response right now. Please try again."
@app.get("/", response_class=JSONResponse)
async def root() -> Dict[str, Any]:
"""Root endpoint with service information"""
return {
"message": "Gemma 3n GGUF Backend Service is running!",
"model": current_model,
"version": "1.0.0",
"backend": "llama-cpp-python",
"model_loaded": llm is not None,
"endpoints": {
"health": "/health",
"chat_completions": "/v1/chat/completions"
}
}
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint"""
return HealthResponse(
status="healthy" if (llm is not None) else "demo_mode",
model=current_model,
version="1.0.0",
backend="llama-cpp-python"
)
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(
request: ChatCompletionRequest
) -> ChatCompletionResponse:
"""Create a chat completion (OpenAI-compatible) using Gemma 3n GGUF"""
try:
ensure_model_ready()
if not request.messages:
raise HTTPException(status_code=400, detail="Messages cannot be empty")
logger.info(f"Generating Gemma 3n response for {len(request.messages)} messages")
response_text = generate_response_gguf(
request.messages,
request.max_tokens or 512,
request.temperature or 1.0,
request.top_p or 0.95,
request.top_k or 64
)
response_text = response_text.strip() if response_text else "No response generated."
return ChatCompletionResponse(
id=f"chatcmpl-{int(time.time())}",
created=int(time.time()),
model=request.model,
choices=[ChatCompletionChoice(
index=0,
message=ChatMessage(role="assistant", content=response_text),
finish_reason="stop"
)]
)
except Exception as e:
logger.error(f"Error in chat completion: {e}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
# -----------------------------
# Training Job Management (Unsloth)
# -----------------------------
# Jobs are tracked in-memory; logs and artifacts are written to disk
TRAIN_JOBS: Dict[str, Dict[str, Any]] = {}
TRAIN_DIR = Path(os.environ.get("TRAIN_DIR", "./training_runs")).resolve()
TRAIN_DIR.mkdir(parents=True, exist_ok=True)
def _start_training_subprocess(job_id: str, args: Dict[str, Any]) -> subprocess.Popen[Any]:
"""Spawn a subprocess to run the Unsloth fine-tuning script."""
logs_dir = TRAIN_DIR / job_id
logs_dir.mkdir(parents=True, exist_ok=True)
log_file = open(logs_dir / "train.log", "w", encoding="utf-8")
# Build absolute script path to avoid module/package resolution issues
script_path = (Path(__file__).parent / "training" / "train_gemma_unsloth.py").resolve()
python_exec = sys.executable
cmd = [
python_exec,
str(script_path),
"--job-id", job_id,
"--output-dir", str(logs_dir),
]
# Optional user-specified args
def _extend(k: str, v: Any):
if v is None:
return
if isinstance(v, bool):
cmd.extend([f"--{k}"] if v else [])
else:
cmd.extend([f"--{k}", str(v)])
_extend("dataset", args.get("dataset"))
_extend("text-field", args.get("text_field"))
_extend("prompt-field", args.get("prompt_field"))
_extend("response-field", args.get("response_field"))
_extend("max-steps", args.get("max_steps"))
_extend("epochs", args.get("epochs"))
_extend("lr", args.get("lr"))
_extend("batch-size", args.get("batch_size"))
_extend("gradient-accumulation", args.get("gradient_accumulation"))
_extend("lora-r", args.get("lora_r"))
_extend("lora-alpha", args.get("lora_alpha"))
_extend("cutoff-len", args.get("cutoff_len"))
_extend("model-id", args.get("model_id"))
_extend("use-bf16", args.get("use_bf16"))
_extend("use-fp16", args.get("use_fp16"))
_extend("seed", args.get("seed"))
_extend("dry-run", args.get("dry_run"))
logger.info(f"π§΅ Starting training subprocess for job {job_id}: {' '.join(cmd)}")
logger.info(f"π Using interpreter: {python_exec}")
proc = subprocess.Popen(cmd, stdout=log_file, stderr=subprocess.STDOUT, cwd=str(Path(__file__).parent))
return proc
def _watch_process(job_id: str, proc: subprocess.Popen[Any]):
"""Monitor a training process and update job state on exit."""
return_code = proc.wait()
status = "completed" if return_code == 0 else "failed"
TRAIN_JOBS[job_id]["status"] = status
TRAIN_JOBS[job_id]["return_code"] = return_code
TRAIN_JOBS[job_id]["ended_at"] = int(time.time())
logger.info(f"π Training job {job_id} finished with status={status}, code={return_code}")
class StartTrainingRequest(BaseModel):
dataset: str = Field(..., description="HF dataset name or path to local JSONL/JSON file")
model_id: Optional[str] = Field(default="unsloth/gemma-3n-E4B-it", description="Base model for training (HF Transformers format)")
text_field: Optional[str] = Field(default=None, description="Single text field name (SFT)")
prompt_field: Optional[str] = Field(default=None, description="Prompt/instruction field (chat data)")
response_field: Optional[str] = Field(default=None, description="Response/output field (chat data)")
max_steps: Optional[int] = Field(default=None)
epochs: Optional[int] = Field(default=1)
lr: Optional[float] = Field(default=2e-4)
batch_size: Optional[int] = Field(default=1)
gradient_accumulation: Optional[int] = Field(default=8)
lora_r: Optional[int] = Field(default=16)
lora_alpha: Optional[int] = Field(default=32)
cutoff_len: Optional[int] = Field(default=4096)
use_bf16: Optional[bool] = Field(default=True)
use_fp16: Optional[bool] = Field(default=False)
seed: Optional[int] = Field(default=42)
dry_run: Optional[bool] = Field(default=False, description="Write DONE and exit without running (for CI/macOS)")
class StartTrainingResponse(BaseModel):
job_id: str
status: str
output_dir: str
class TrainStatusResponse(BaseModel):
job_id: str
status: str
created_at: int
started_at: Optional[int] = None
ended_at: Optional[int] = None
output_dir: Optional[str] = None
return_code: Optional[int] = None
@app.post("/train/start", response_model=StartTrainingResponse)
def start_training(req: StartTrainingRequest):
"""Start a background Unsloth fine-tuning job. Returns a job_id to poll."""
job_id = uuid.uuid4().hex[:12]
now = int(time.time())
output_dir = str((TRAIN_DIR / job_id).resolve())
TRAIN_JOBS[job_id] = {
"status": "starting",
"created_at": now,
"started_at": now,
"args": req.model_dump(),
"output_dir": output_dir,
}
try:
proc = _start_training_subprocess(job_id, req.model_dump())
TRAIN_JOBS[job_id]["status"] = "running"
TRAIN_JOBS[job_id]["pid"] = proc.pid
watcher = threading.Thread(target=_watch_process, args=(job_id, proc), daemon=True)
watcher.start()
return StartTrainingResponse(job_id=job_id, status="running", output_dir=output_dir)
except Exception as e:
logger.exception("Failed to start training job")
TRAIN_JOBS[job_id]["status"] = "failed_to_start"
raise HTTPException(status_code=500, detail=f"Failed to start training: {e}")
@app.get("/train/status/{job_id}", response_model=TrainStatusResponse)
def train_status(job_id: str):
job = TRAIN_JOBS.get(job_id)
if not job:
raise HTTPException(status_code=404, detail="Job not found")
return TrainStatusResponse(
job_id=job_id,
status=job.get("status", "unknown"),
created_at=job.get("created_at", 0),
started_at=job.get("started_at"),
ended_at=job.get("ended_at"),
output_dir=job.get("output_dir"),
return_code=job.get("return_code"),
)
@app.get("/train/logs/{job_id}")
def train_logs(job_id: str, tail: int = 200):
job = TRAIN_JOBS.get(job_id)
if not job:
raise HTTPException(status_code=404, detail="Job not found")
log_path = Path(job["output_dir"]) / "train.log"
if not log_path.exists():
return {"job_id": job_id, "logs": "(no logs yet)"}
try:
with open(log_path, "r", encoding="utf-8", errors="ignore") as f:
lines = f.readlines()[-tail:]
return {"job_id": job_id, "logs": "".join(lines)}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to read logs: {e}")
@app.post("/train/stop/{job_id}")
def train_stop(job_id: str):
job = TRAIN_JOBS.get(job_id)
if not job:
raise HTTPException(status_code=404, detail="Job not found")
pid = job.get("pid")
if not pid:
raise HTTPException(status_code=400, detail="Job does not have an active PID")
try:
os.kill(pid, 15) # SIGTERM
job["status"] = "stopping"
return {"job_id": job_id, "status": "stopping"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to stop job: {e}")
# Main entry point
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
|