File size: 9,773 Bytes
78b611a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python3
"""
Unsloth fine-tuning runner for Gemma-3n-E4B-it.
- Trains a LoRA adapter on top of HF Transformers-format base model (not GGUF).
- Output: PEFT adapter that can later be merged/exported to GGUF separately if desired.

This is a minimal, production-friendly CLI so the API server can spawn it as a subprocess.
"""
import argparse
import os
import json
import time
from pathlib import Path
from typing import Any, Dict

# Lazy imports to keep API light

def _import_training_libs() -> Dict[str, Any]:
    """Try to import Unsloth fast path; if unavailable, fall back to Transformers+PEFT.

    Returns a dict with keys:
      mode: "unsloth" | "hf"
      load_dataset, SFTTrainer, SFTConfig
      If mode=="unsloth": FastLanguageModel, AutoTokenizer
      If mode=="hf": AutoTokenizer, AutoModelForCausalLM, get_peft_model, LoraConfig, torch
    """
    # Avoid heavy optional deps on macOS (no xformers/bitsandbytes)
    os.environ.setdefault("UNSLOTH_DISABLE_XFORMERS", "1")
    os.environ.setdefault("UNSLOTH_DISABLE_BITSANDBYTES", "1")
    from datasets import load_dataset
    from trl import SFTTrainer, SFTConfig
    try:
        from unsloth import FastLanguageModel
        from transformers import AutoTokenizer
        return {
            "mode": "unsloth",
            "load_dataset": load_dataset,
            "SFTTrainer": SFTTrainer,
            "SFTConfig": SFTConfig,
            "FastLanguageModel": FastLanguageModel,
            "AutoTokenizer": AutoTokenizer,
        }
    except Exception:
        # Fallback: pure HF + PEFT (CPU / MPS friendly)
        from transformers import AutoTokenizer, AutoModelForCausalLM
        from peft import get_peft_model, LoraConfig
        import torch
        return {
            "mode": "hf",
            "load_dataset": load_dataset,
            "SFTTrainer": SFTTrainer,
            "SFTConfig": SFTConfig,
            "AutoTokenizer": AutoTokenizer,
            "AutoModelForCausalLM": AutoModelForCausalLM,
            "get_peft_model": get_peft_model,
            "LoraConfig": LoraConfig,
            "torch": torch,
        }


def parse_args():
    p = argparse.ArgumentParser()
    p.add_argument("--job-id", required=True)
    p.add_argument("--output-dir", required=True)
    p.add_argument("--dataset", required=True, help="HF dataset path or local JSON/JSONL file")
    p.add_argument("--text-field", dest="text_field", default=None)
    p.add_argument("--prompt-field", dest="prompt_field", default=None)
    p.add_argument("--response-field", dest="response_field", default=None)
    p.add_argument("--model-id", dest="model_id", default="unsloth/gemma-3n-E4B-it")
    p.add_argument("--epochs", type=int, default=1)
    p.add_argument("--max-steps", dest="max_steps", type=int, default=None)
    p.add_argument("--lr", type=float, default=2e-4)
    p.add_argument("--batch-size", dest="batch_size", type=int, default=1)
    p.add_argument("--gradient-accumulation", dest="gradient_accumulation", type=int, default=8)
    p.add_argument("--lora-r", dest="lora_r", type=int, default=16)
    p.add_argument("--lora-alpha", dest="lora_alpha", type=int, default=32)
    p.add_argument("--cutoff-len", dest="cutoff_len", type=int, default=4096)
    p.add_argument("--use-bf16", dest="use_bf16", action="store_true")
    p.add_argument("--use-fp16", dest="use_fp16", action="store_true")
    p.add_argument("--seed", type=int, default=42)
    p.add_argument("--dry-run", dest="dry_run", action="store_true", help="Write DONE and exit without training (for CI)")
    return p.parse_args()


def _is_local_path(s: str) -> bool:
    return os.path.exists(s)


def _load_dataset(load_dataset: Any, path: str) -> Any:
    if _is_local_path(path):
        # Infer extension
        if path.endswith(".jsonl") or path.endswith(".jsonl.gz"):
            return load_dataset("json", data_files=path, split="train")
        elif path.endswith(".json"):
            return load_dataset("json", data_files=path, split="train")
        else:
            raise ValueError("Unsupported local dataset format. Use JSON or JSONL.")
    else:
        return load_dataset(path, split="train")


def main():
    args = parse_args()
    start = time.time()
    out_dir = Path(args.output_dir)
    out_dir.mkdir(parents=True, exist_ok=True)
    (out_dir / "meta.json").write_text(json.dumps({
        "job_id": args.job_id,
        "model_id": args.model_id,
        "dataset": args.dataset,
        "created_at": int(start),
    }, indent=2))

    if args.dry_run:
        (out_dir / "DONE").write_text("dry_run")
        print("[train] Dry run complete. DONE written.")
        return

    # Training imports (supports Unsloth fast path and HF fallback)
    libs: Dict[str, Any] = _import_training_libs()
    load_dataset = libs["load_dataset"]
    SFTTrainer = libs["SFTTrainer"]
    SFTConfig = libs["SFTConfig"]

    # Environment for stability on T4 etc per Unsloth guidance
    os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "expandable_segments:True")
    os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")

    print(f"[train] Loading base model: {args.model_id}")
    if libs["mode"] == "unsloth":
        FastLanguageModel = libs["FastLanguageModel"]
        AutoTokenizer = libs["AutoTokenizer"]
        model, tokenizer = FastLanguageModel.from_pretrained(
            model_name=args.model_id,
            max_seq_length=args.cutoff_len,
            # Avoid bitsandbytes/xformers
            load_in_4bit=False,
            dtype=None,
            use_gradient_checkpointing="unsloth",
        )
        # Prepare LoRA via Unsloth helper
        print("[train] Attaching LoRA adapter (Unsloth)")
        model = FastLanguageModel.get_peft_model(
            model,
            r=args.lora_r,
            lora_alpha=args.lora_alpha,
            lora_dropout=0,
            bias="none",
            target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"],
            use_rslora=True,
            loftq_config=None,
        )
    else:
        # HF + PEFT fallback (CPU / MPS)
        AutoTokenizer = libs["AutoTokenizer"]
        AutoModelForCausalLM = libs["AutoModelForCausalLM"]
        get_peft_model = libs["get_peft_model"]
        LoraConfig = libs["LoraConfig"]
        torch = libs["torch"]

        tokenizer = AutoTokenizer.from_pretrained(args.model_id, use_fast=True, trust_remote_code=True)
        # Prefer MPS on Apple Silicon if available
        use_mps = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
        torch_dtype = torch.float16 if (args.use_fp16 or args.use_bf16) and not use_mps else torch.float32
        model = AutoModelForCausalLM.from_pretrained(
            args.model_id,
            torch_dtype=torch_dtype,
            trust_remote_code=True,
        )
        if use_mps:
            model.to("mps")
        print("[train] Attaching LoRA adapter (HF/PEFT)")
        lora_config = LoraConfig(
            r=args.lora_r,
            lora_alpha=args.lora_alpha,
            target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"],
            lora_dropout=0.0,
            bias="none",
            task_type="CAUSAL_LM",
        )
        model = get_peft_model(model, lora_config)

    # Load dataset
    print(f"[train] Loading dataset: {args.dataset}")
    ds = _load_dataset(load_dataset, args.dataset)

    # Build formatting
    text_field = args.text_field
    prompt_field = args.prompt_field
    response_field = args.response_field

    if text_field:
        # Simple SFT: single text field
        def format_row(ex):
            return ex[text_field]
    elif prompt_field and response_field:
        # Chat data: prompt + response
        def format_row(ex):
            return f"<start_of_turn>user\n{ex[prompt_field]}<end_of_turn>\n<start_of_turn>model\n{ex[response_field]}<end_of_turn>\n"
    else:
        raise ValueError("Provide either --text-field or both --prompt-field and --response-field")

    def map_fn(ex):
        return {"text": format_row(ex)}

    ds = ds.map(map_fn, remove_columns=[c for c in ds.column_names if c != "text"])

    # Trainer
    trainer = SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        train_dataset=ds,
        max_seq_length=args.cutoff_len,
        dataset_text_field="text",
        packing=True,
        args=SFTConfig(
            output_dir=str(out_dir / "hf"),
            per_device_train_batch_size=args.batch_size,
            gradient_accumulation_steps=args.gradient_accumulation,
            learning_rate=args.lr,
            num_train_epochs=args.epochs,
            max_steps=args.max_steps if args.max_steps else -1,
            logging_steps=10,
            save_steps=200,
            save_total_limit=2,
            bf16=args.use_bf16,
            fp16=args.use_fp16,
            seed=args.seed,
            report_to=[],
        ),
    )

    print("[train] Starting training...")
    trainer.train()
    print("[train] Saving adapter...")
    adapter_path = out_dir / "adapter"
    adapter_path.mkdir(parents=True, exist_ok=True)
    # Save adapter-only weights if PEFT; Unsloth path is also PEFT-compatible
    try:
        model.save_pretrained(str(adapter_path))
    except Exception:
        # Fallback: save full model (large); unlikely on LoRA
        try:
            model.base_model.save_pretrained(str(adapter_path))  # type: ignore[attr-defined]
        except Exception:
            pass
    tokenizer.save_pretrained(str(adapter_path))

    # Write done file
    (out_dir / "DONE").write_text("ok")
    elapsed = time.time() - start
    print(f"[train] Finished in {elapsed:.1f}s. Artifacts at: {out_dir}")


if __name__ == "__main__":
    main()