File size: 9,420 Bytes
78b611a
 
 
 
 
 
 
 
 
 
 
 
 
 
3960f0f
 
 
78b611a
 
 
 
 
 
 
 
 
 
 
 
 
 
91181f3
 
 
 
 
 
 
 
 
 
 
 
 
78b611a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91181f3
 
 
 
78b611a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91181f3
 
 
 
 
 
 
78b611a
 
 
 
 
91181f3
 
 
 
 
 
 
3960f0f
 
91181f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78b611a
 
 
 
 
 
 
 
 
 
 
3960f0f
 
 
 
78b611a
 
3960f0f
 
 
 
 
 
 
 
 
78b611a
 
 
3960f0f
78b611a
 
 
 
91181f3
 
 
 
 
 
 
 
 
 
78b611a
91181f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78b611a
91181f3
 
78b611a
 
 
 
 
 
 
 
 
 
3960f0f
91181f3
78b611a
 
91181f3
 
 
 
 
 
78b611a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python3
"""
Unsloth fine-tuning runner for Gemma-3n-E4B-it.
- Trains a LoRA adapter on top of HF Transformers-format base model (not GGUF).
- Output: PEFT adapter that can later be merged/exported to GGUF separately if desired.

This is a minimal, production-friendly CLI so the API server can spawn it as a subprocess.
"""
import argparse
import os
import json
import time
from pathlib import Path
from typing import Any, Dict
import logging

logger = logging.getLogger(__name__)

# Lazy imports to keep API light

def _import_training_libs() -> Dict[str, Any]:
    """Try to import Unsloth fast path; if unavailable, fall back to Transformers+PEFT.

    Returns a dict with keys:
      mode: "unsloth" | "hf"
      load_dataset, SFTTrainer, SFTConfig
      If mode=="unsloth": FastLanguageModel, AutoTokenizer
      If mode=="hf": AutoTokenizer, AutoModelForCausalLM, get_peft_model, LoraConfig, torch
    """
    # Avoid heavy optional deps on macOS (no xformers/bitsandbytes)
    from datasets import load_dataset
    from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
    from peft import get_peft_model, LoraConfig
    import torch
    return {
        "load_dataset": load_dataset,
        "AutoTokenizer": AutoTokenizer,
        "AutoModelForCausalLM": AutoModelForCausalLM,
        "get_peft_model": get_peft_model,
        "LoraConfig": LoraConfig,
        "Trainer": Trainer,
        "TrainingArguments": TrainingArguments,
        "torch": torch,
    }


def parse_args():
    p = argparse.ArgumentParser()
    p.add_argument("--job-id", required=True)
    p.add_argument("--output-dir", required=True)
    p.add_argument("--dataset", required=True, help="HF dataset path or local JSON/JSONL file")
    p.add_argument("--text-field", dest="text_field", default=None)
    p.add_argument("--prompt-field", dest="prompt_field", default=None)
    p.add_argument("--response-field", dest="response_field", default=None)
    p.add_argument("--model-id", dest="model_id", default="unsloth/gemma-3n-E4B-it")
    p.add_argument("--epochs", type=int, default=1)
    p.add_argument("--max-steps", dest="max_steps", type=int, default=None)
    p.add_argument("--lr", type=float, default=2e-4)
    p.add_argument("--batch-size", dest="batch_size", type=int, default=1)
    p.add_argument("--gradient-accumulation", dest="gradient_accumulation", type=int, default=8)
    p.add_argument("--lora-r", dest="lora_r", type=int, default=16)
    p.add_argument("--lora-alpha", dest="lora_alpha", type=int, default=32)
    p.add_argument("--cutoff-len", dest="cutoff_len", type=int, default=4096)
    p.add_argument("--use-bf16", dest="use_bf16", action="store_true")
    p.add_argument("--use-fp16", dest="use_fp16", action="store_true")
    p.add_argument("--seed", type=int, default=42)
    p.add_argument("--dry-run", dest="dry_run", action="store_true", help="Write DONE and exit without training (for CI)")
    p.add_argument("--grpo", dest="use_grpo", action="store_true", help="Enable GRPO (if supported by Unsloth)")
    p.add_argument("--cpt", dest="use_cpt", action="store_true", help="Enable CPT (if supported by Unsloth)")
    p.add_argument("--export-gguf", dest="export_gguf", action="store_true", help="Export model to GGUF Q4_K_XL after training")
    p.add_argument("--gguf-out", dest="gguf_out", default=None, help="Path to save GGUF file (if exporting)")
    return p.parse_args()


def _is_local_path(s: str) -> bool:
    return os.path.exists(s)


def _load_dataset(load_dataset: Any, path: str) -> Any:
    if _is_local_path(path):
        # Infer extension
        if path.endswith(".jsonl") or path.endswith(".jsonl.gz"):
            return load_dataset("json", data_files=path, split="train")
        elif path.endswith(".json"):
            return load_dataset("json", data_files=path, split="train")
        else:
            raise ValueError("Unsupported local dataset format. Use JSON or JSONL.")
    else:
        return load_dataset(path, split="train")


def main():
    args = parse_args()
    start = time.time()
    out_dir = Path(args.output_dir)
    out_dir.mkdir(parents=True, exist_ok=True)
    (out_dir / "meta.json").write_text(json.dumps({
        "job_id": args.job_id,
        "model_id": args.model_id,
        "dataset": args.dataset,
        "created_at": int(start),
    }, indent=2))

    if args.dry_run:
        (out_dir / "DONE").write_text("dry_run")
        print("[train] Dry run complete. DONE written.")
        return

    # Training imports (supports Unsloth fast path and HF fallback)
    libs: Dict[str, Any] = _import_training_libs()
    load_dataset = libs["load_dataset"]
    AutoTokenizer = libs["AutoTokenizer"]
    AutoModelForCausalLM = libs["AutoModelForCausalLM"]
    get_peft_model = libs["get_peft_model"]
    LoraConfig = libs["LoraConfig"]
    Trainer = libs["Trainer"]
    TrainingArguments = libs["TrainingArguments"]
    torch = libs["torch"]

    os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "expandable_segments:True")
    os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")

    print(f"[train] Loading base model: {args.model_id}")
    tokenizer = AutoTokenizer.from_pretrained(args.model_id, use_fast=True, trust_remote_code=True)
    use_mps = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
    if not use_mps:
        if args.use_fp16:
            dtype = torch.float16
        elif args.use_bf16:
            dtype = torch.bfloat16
        else:
            dtype = torch.float32
    else:
        dtype = torch.float32
    model = AutoModelForCausalLM.from_pretrained(
        args.model_id,
        torch_dtype=dtype,
        trust_remote_code=True,
    )
    if use_mps:
        model.to("mps")
    print("[train] Attaching LoRA adapter (PEFT)")
    lora_config = LoraConfig(
        r=args.lora_r,
        lora_alpha=args.lora_alpha,
        target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"],
        lora_dropout=0.0,
        bias="none",
        task_type="CAUSAL_LM",
    )
    model = get_peft_model(model, lora_config)

    # Load dataset
    print(f"[train] Loading dataset: {args.dataset}")
    ds = _load_dataset(load_dataset, args.dataset)

    # Build formatting
    text_field = args.text_field
    prompt_field = args.prompt_field
    response_field = args.response_field

    if text_field:
        # Simple SFT: single text field with validation
        def format_row(ex: Dict[str, Any]) -> str:
            if text_field not in ex:
                raise KeyError(f"Missing required text field '{text_field}' in example: {ex}")
            return ex[text_field]
    elif prompt_field and response_field:
        # Chat data: prompt + response with validation
        def format_row(ex: Dict[str, Any]) -> str:
            missing = [f for f in (prompt_field, response_field) if f not in ex]
            if missing:
                raise KeyError(f"Missing required field(s) {missing} in example: {ex}")
            return (
                f"<start_of_turn>user\n{ex[prompt_field]}<end_of_turn>\n"
                f"<start_of_turn>model\n{ex[response_field]}<end_of_turn>\n"
            )
    else:
        raise ValueError("Provide either --text-field or both --prompt-field and --response-field")

    def map_fn(ex: Dict[str, Any]) -> Dict[str, str]:
        return {"text": format_row(ex)}

    ds = ds.map(map_fn, remove_columns=[c for c in ds.column_names if c != "text"])

    # Tokenize dataset
    def tokenize_fn(ex):
        return tokenizer(
            ex["text"],
            truncation=True,
            max_length=args.cutoff_len,
            padding="max_length",
        )
    tokenized_ds = ds.map(tokenize_fn, batched=True)

    # Trainer
    training_args = TrainingArguments(
        output_dir=str(out_dir / "hf"),
        per_device_train_batch_size=args.batch_size,
        gradient_accumulation_steps=args.gradient_accumulation,
        learning_rate=args.lr,
        num_train_epochs=args.epochs,
        max_steps=args.max_steps if args.max_steps else -1,
        logging_steps=10,
        save_steps=200,
        save_total_limit=2,
        bf16=args.use_bf16,
        fp16=args.use_fp16,
        seed=args.seed,
        report_to=[],
    )
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_ds,
        tokenizer=tokenizer,
    )

    print("[train] Starting training...")
    trainer.train()
    print("[train] Saving adapter...")
    adapter_path = out_dir / "adapter"
    adapter_path.mkdir(parents=True, exist_ok=True)
    try:
        model.save_pretrained(str(adapter_path))
    except Exception as e:
        logger.error("Error during model saving: %s", e, exc_info=True)
    tokenizer.save_pretrained(str(adapter_path))

    # Optionally export to GGUF Q4_K_XL
    if args.export_gguf:
        print("[train] Export to GGUF is not supported in Hugging Face-only mode. Use llama.cpp's convert-hf-to-gguf.py after training.")
        gguf_path = args.gguf_out or str(out_dir / "adapter-gguf-q4_k_xl")
        print(f"python convert-hf-to-gguf.py --outtype q4_k_xl --outfile {gguf_path} {adapter_path}")

    # Write done file
    (out_dir / "DONE").write_text("ok")
    elapsed = time.time() - start
    print(f"[train] Finished in {elapsed:.1f}s. Artifacts at: {out_dir}")


if __name__ == "__main__":
    main()