|
|
|
""" |
|
Debug script to test HuggingFace Inference API directly |
|
""" |
|
|
|
import os |
|
import sys |
|
from huggingface_hub import InferenceClient |
|
import traceback |
|
|
|
def test_model(model_name, prompt="Hello, how are you?"): |
|
"""Test a specific model with the HuggingFace Inference API""" |
|
print(f"\nπ Testing model: {model_name}") |
|
print("=" * 50) |
|
|
|
try: |
|
|
|
client = InferenceClient(model=model_name) |
|
print(f"β
Client initialized successfully") |
|
|
|
|
|
print(f"π Testing prompt: '{prompt}'") |
|
|
|
|
|
try: |
|
print("\n㪠Method 1: Full parameters") |
|
response = client.text_generation( |
|
prompt=prompt, |
|
max_new_tokens=50, |
|
temperature=0.7, |
|
top_p=0.95, |
|
return_full_text=False, |
|
stop=["Human:", "System:"] |
|
) |
|
print(f"β
Success: {response}") |
|
return True |
|
|
|
except Exception as e: |
|
print(f"β Method 1 failed: {e}") |
|
print(f"Error type: {type(e).__name__}") |
|
|
|
|
|
try: |
|
print("\n㪠Method 2: Minimal parameters") |
|
response = client.text_generation( |
|
prompt=prompt, |
|
max_new_tokens=50, |
|
temperature=0.7, |
|
return_full_text=False |
|
) |
|
print(f"β
Success: {response}") |
|
return True |
|
|
|
except Exception as e: |
|
print(f"β Method 2 failed: {e}") |
|
print(f"Error type: {type(e).__name__}") |
|
|
|
|
|
try: |
|
print("\n㪠Method 3: Basic parameters") |
|
response = client.text_generation( |
|
prompt=prompt, |
|
max_new_tokens=30 |
|
) |
|
print(f"β
Success: {response}") |
|
return True |
|
|
|
except Exception as e: |
|
print(f"β Method 3 failed: {e}") |
|
print(f"Error type: {type(e).__name__}") |
|
print(f"Full traceback:") |
|
traceback.print_exc() |
|
|
|
return False |
|
|
|
except Exception as e: |
|
print(f"β Failed to initialize client: {e}") |
|
print(f"Error type: {type(e).__name__}") |
|
traceback.print_exc() |
|
return False |
|
|
|
def test_model_info(model_name): |
|
"""Test getting model information""" |
|
try: |
|
print(f"\nπ Getting model info for: {model_name}") |
|
client = InferenceClient() |
|
|
|
print("β
Model appears to be accessible") |
|
return True |
|
except Exception as e: |
|
print(f"β Model info failed: {e}") |
|
return False |
|
|
|
if __name__ == "__main__": |
|
|
|
hf_token = os.environ.get("HF_TOKEN") |
|
if hf_token: |
|
print(f"π Using HF_TOKEN: {hf_token[:10]}...") |
|
else: |
|
print("β οΈ No HF_TOKEN found, using anonymous access") |
|
|
|
|
|
models_to_test = [ |
|
"unsloth/DeepSeek-R1-0528-Qwen3-8B-GGUF", |
|
"microsoft/DialoGPT-medium", |
|
"meta-llama/Llama-2-7b-chat-hf", |
|
"HuggingFaceH4/zephyr-7b-beta" |
|
] |
|
|
|
results = {} |
|
|
|
for model in models_to_test: |
|
print(f"\n{'='*60}") |
|
test_result = test_model(model) |
|
results[model] = test_result |
|
|
|
|
|
info_result = test_model_info(model) |
|
|
|
print(f"\nResult for {model}: {'β
WORKING' if test_result else 'β FAILED'}") |
|
|
|
print(f"\n{'='*60}") |
|
print("SUMMARY:") |
|
print("="*60) |
|
for model, result in results.items(): |
|
status = "β
WORKING" if result else "β FAILED" |
|
print(f"{model}: {status}") |
|
|