|
""" |
|
FastAPI Backend AI Service using Gemma-3n-E4B-it-GGUF |
|
Provides OpenAI-compatible chat completion endpoints powered by llama-cpp-python |
|
""" |
|
|
|
import os |
|
import warnings |
|
import logging |
|
import time |
|
from contextlib import asynccontextmanager |
|
from typing import List, Dict, Any, Optional, Union |
|
|
|
from fastapi import FastAPI, HTTPException, Request |
|
from fastapi.responses import StreamingResponse, JSONResponse |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from pydantic import BaseModel, Field, field_validator |
|
|
|
|
|
try: |
|
from llama_cpp import Llama |
|
llama_cpp_available = True |
|
except ImportError: |
|
llama_cpp_available = False |
|
|
|
import uvicorn |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class ChatMessage(BaseModel): |
|
role: str = Field(..., description="The role of the message author") |
|
content: str = Field(..., description="The content of the message") |
|
|
|
@field_validator('role') |
|
@classmethod |
|
def validate_role(cls, v: str) -> str: |
|
if v not in ["system", "user", "assistant"]: |
|
raise ValueError("Role must be one of: system, user, assistant") |
|
return v |
|
|
|
class ChatCompletionRequest(BaseModel): |
|
model: str = Field(default="gemma-3n-e4b-it", description="The model to use for completion") |
|
messages: List[ChatMessage] = Field(..., description="List of messages in the conversation") |
|
max_tokens: Optional[int] = Field(default=512, ge=1, le=2048, description="Maximum tokens to generate") |
|
temperature: Optional[float] = Field(default=1.0, ge=0.0, le=2.0, description="Sampling temperature") |
|
top_p: Optional[float] = Field(default=0.95, ge=0.0, le=1.0, description="Top-p sampling") |
|
top_k: Optional[int] = Field(default=64, ge=1, le=100, description="Top-k sampling") |
|
stream: Optional[bool] = Field(default=False, description="Whether to stream responses") |
|
|
|
class ChatCompletionChoice(BaseModel): |
|
index: int |
|
message: ChatMessage |
|
finish_reason: str |
|
|
|
class ChatCompletionResponse(BaseModel): |
|
id: str |
|
object: str = "chat.completion" |
|
created: int |
|
model: str |
|
choices: List[ChatCompletionChoice] |
|
|
|
class HealthResponse(BaseModel): |
|
status: str |
|
model: str |
|
version: str |
|
|
|
class ModelInfo(BaseModel): |
|
id: str |
|
object: str = "model" |
|
created: int |
|
owned_by: str = "huggingface" |
|
|
|
class ModelsResponse(BaseModel): |
|
object: str = "list" |
|
data: List[ModelInfo] |
|
|
|
|
|
current_model = os.environ.get("AI_MODEL", "unsloth/gemma-3n-E4B-it-GGUF") |
|
llm = None |
|
|
|
def create_gemma_chat_template(): |
|
""" |
|
Create a custom chat template for Gemma 3n |
|
Based on the format: <bos><start_of_turn>user\n{user_message}<end_of_turn>\n<start_of_turn>model\n{assistant_response}<end_of_turn> |
|
""" |
|
return """<bos>{% for message in messages %}{% if message['role'] == 'user' %}<start_of_turn>user |
|
{{ message['content'] }}<end_of_turn> |
|
{% elif message['role'] == 'assistant' %}<start_of_turn>model |
|
{{ message['content'] }}<end_of_turn> |
|
{% elif message['role'] == 'system' %}<start_of_turn>system |
|
{{ message['content'] }}<end_of_turn> |
|
{% endif %}{% endfor %}<start_of_turn>model |
|
""" |
|
|
|
@asynccontextmanager |
|
async def lifespan(app: FastAPI): |
|
"""Application lifespan manager for startup and shutdown events""" |
|
global llm |
|
logger.info("🚀 Starting Gemma 3n Backend Service...") |
|
|
|
if not llama_cpp_available: |
|
logger.error("❌ llama-cpp-python is not available. Please install with: pip install llama-cpp-python") |
|
raise RuntimeError("llama-cpp-python not available") |
|
|
|
try: |
|
logger.info(f"📥 Loading Gemma 3n model from {current_model}...") |
|
|
|
|
|
|
|
llm = Llama.from_pretrained( |
|
repo_id=current_model, |
|
filename="*q4_k_m.gguf", |
|
verbose=True, |
|
|
|
n_ctx=4096, |
|
n_threads=4, |
|
n_gpu_layers=-1, |
|
|
|
chat_format="gemma", |
|
) |
|
|
|
logger.info("✅ Successfully loaded Gemma 3n model") |
|
|
|
except Exception as e: |
|
logger.error(f"❌ Failed to initialize Gemma 3n model: {e}") |
|
|
|
try: |
|
logger.info("🔄 Trying alternative model loading approach...") |
|
|
|
logger.warning("⚠️ Please download the GGUF model file locally and update the path") |
|
logger.warning("⚠️ You can download from: https://huggingface.co/unsloth/gemma-3n-E4B-it-GGUF") |
|
|
|
|
|
raise RuntimeError( |
|
"Model loading failed. Please download the GGUF model locally:\n" |
|
"1. Visit: https://huggingface.co/unsloth/gemma-3n-E4B-it-GGUF\n" |
|
"2. Download a GGUF file (recommended: gemma-3n-e4b-it-q4_k_m.gguf)\n" |
|
"3. Update the model path in the code" |
|
) |
|
|
|
except Exception as fallback_error: |
|
logger.error(f"❌ Fallback loading also failed: {fallback_error}") |
|
raise RuntimeError(f"Service initialization failed: {fallback_error}") |
|
|
|
yield |
|
logger.info("🔄 Shutting down Gemma 3n Backend Service...") |
|
if llm: |
|
|
|
llm = None |
|
|
|
|
|
app = FastAPI( |
|
title="Gemma 3n Backend Service", |
|
description="OpenAI-compatible chat completion API powered by Gemma-3n-E4B-it-GGUF", |
|
version="1.0.0", |
|
lifespan=lifespan |
|
) |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
def ensure_model_ready(): |
|
"""Check if model is loaded and ready""" |
|
if llm is None: |
|
raise HTTPException(status_code=503, detail="Service not ready - Gemma 3n model not initialized") |
|
|
|
def convert_messages_to_prompt(messages: List[ChatMessage]) -> str: |
|
"""Convert OpenAI messages format to Gemma 3n chat format""" |
|
|
|
prompt_parts = ["<bos>"] |
|
|
|
for message in messages: |
|
role = message.role |
|
content = message.content |
|
|
|
if role == "system": |
|
prompt_parts.append(f"<start_of_turn>system\n{content}<end_of_turn>") |
|
elif role == "user": |
|
prompt_parts.append(f"<start_of_turn>user\n{content}<end_of_turn>") |
|
elif role == "assistant": |
|
prompt_parts.append(f"<start_of_turn>model\n{content}<end_of_turn>") |
|
|
|
|
|
prompt_parts.append("<start_of_turn>model\n") |
|
|
|
return "\n".join(prompt_parts) |
|
|
|
async def generate_response_gemma( |
|
messages: List[ChatMessage], |
|
max_tokens: int = 512, |
|
temperature: float = 1.0, |
|
top_p: float = 0.95, |
|
top_k: int = 64 |
|
) -> str: |
|
"""Generate response using Gemma 3n model""" |
|
ensure_model_ready() |
|
|
|
try: |
|
|
|
if hasattr(llm, 'create_chat_completion'): |
|
|
|
messages_dict = [{"role": msg.role, "content": msg.content} for msg in messages] |
|
|
|
response = llm.create_chat_completion( |
|
messages=messages_dict, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
stop=["<end_of_turn>", "<eos>"] |
|
) |
|
|
|
return response['choices'][0]['message']['content'].strip() |
|
|
|
else: |
|
|
|
prompt = convert_messages_to_prompt(messages) |
|
|
|
response = llm( |
|
prompt, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
stop=["<end_of_turn>", "<eos>"], |
|
echo=False |
|
) |
|
|
|
return response['choices'][0]['text'].strip() |
|
|
|
except Exception as e: |
|
logger.error(f"Generation failed: {e}") |
|
return "I apologize, but I'm having trouble generating a response right now. Please try again." |
|
|
|
@app.get("/", response_class=JSONResponse) |
|
async def root() -> Dict[str, Any]: |
|
"""Root endpoint with service information""" |
|
return { |
|
"message": "Gemma 3n Backend Service is running!", |
|
"model": current_model, |
|
"version": "1.0.0", |
|
"endpoints": { |
|
"health": "/health", |
|
"models": "/v1/models", |
|
"chat_completions": "/v1/chat/completions" |
|
} |
|
} |
|
|
|
@app.get("/health", response_model=HealthResponse) |
|
async def health_check(): |
|
"""Health check endpoint""" |
|
return HealthResponse( |
|
status="healthy" if (llm is not None) else "unhealthy", |
|
model=current_model, |
|
version="1.0.0" |
|
) |
|
|
|
@app.get("/v1/models", response_model=ModelsResponse) |
|
async def list_models(): |
|
"""List available models (OpenAI-compatible)""" |
|
models = [ |
|
ModelInfo( |
|
id="gemma-3n-e4b-it", |
|
created=int(time.time()), |
|
owned_by="google" |
|
) |
|
] |
|
|
|
return ModelsResponse(data=models) |
|
|
|
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse) |
|
async def create_chat_completion( |
|
request: ChatCompletionRequest |
|
) -> ChatCompletionResponse: |
|
"""Create a chat completion (OpenAI-compatible) using Gemma 3n""" |
|
try: |
|
if not request.messages: |
|
raise HTTPException(status_code=400, detail="Messages cannot be empty") |
|
|
|
logger.info(f"Generating Gemma 3n response for {len(request.messages)} messages") |
|
|
|
response_text = await generate_response_gemma( |
|
request.messages, |
|
request.max_tokens or 512, |
|
request.temperature or 1.0, |
|
request.top_p or 0.95, |
|
request.top_k or 64 |
|
) |
|
|
|
response_text = response_text.strip() if response_text else "No response generated." |
|
|
|
return ChatCompletionResponse( |
|
id=f"chatcmpl-{int(time.time())}", |
|
created=int(time.time()), |
|
model=request.model, |
|
choices=[ChatCompletionChoice( |
|
index=0, |
|
message=ChatMessage(role="assistant", content=response_text), |
|
finish_reason="stop" |
|
)] |
|
) |
|
|
|
except Exception as e: |
|
logger.error(f"Error in chat completion: {e}") |
|
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") |
|
|
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run("gemma_backend_service:app", host="0.0.0.0", port=8000, reload=True) |
|
|