ndc8
commited on
Commit
Β·
4b4e9ed
1
Parent(s):
4f67c26
Refactor backend service to support Gemma 3n model and update requirements; remove obsolete test script and add new dependency tests
Browse files- backend_service.py +115 -48
- requirements.txt +9 -1
- test_app_structure.py +0 -39
- test_deps.py +37 -0
backend_service.py
CHANGED
@@ -7,8 +7,8 @@ import httpx
|
|
7 |
# Hugging Face Spaces: Only transformers backend is supported (no vLLM, no llama-cpp/gguf)
|
8 |
|
9 |
"""
|
10 |
-
FastAPI Backend AI Service using Gemma-3n-E4B-it
|
11 |
-
Provides OpenAI-compatible chat completion endpoints powered by
|
12 |
"""
|
13 |
import warnings
|
14 |
|
@@ -45,6 +45,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
45 |
# Transformers imports (now fallback for non-GGUF models)
|
46 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoConfig # type: ignore
|
47 |
from transformers import BitsAndBytesConfig # type: ignore
|
|
|
|
|
48 |
import torch
|
49 |
# Configure logging
|
50 |
logging.basicConfig(level=logging.INFO)
|
@@ -88,7 +90,7 @@ class ChatMessage(BaseModel):
|
|
88 |
return v
|
89 |
|
90 |
class ChatCompletionRequest(BaseModel):
|
91 |
-
model: str = Field(default_factory=lambda: os.environ.get("AI_MODEL", "
|
92 |
messages: List[ChatMessage] = Field(..., description="List of messages in the conversation")
|
93 |
max_tokens: Optional[int] = Field(default=512, ge=1, le=2048, description="Maximum tokens to generate")
|
94 |
temperature: Optional[float] = Field(default=0.7, ge=0.0, le=2.0, description="Sampling temperature")
|
@@ -137,11 +139,11 @@ class CompletionRequest(BaseModel):
|
|
137 |
|
138 |
|
139 |
# Model can be configured via environment variable - defaults to Gemma 3n (transformers format)
|
140 |
-
current_model = os.environ.get("AI_MODEL", "
|
141 |
vision_model = os.environ.get("VISION_MODEL", "Salesforce/blip-image-captioning-base")
|
142 |
|
143 |
# Transformers model support
|
144 |
-
|
145 |
model = None
|
146 |
image_text_pipeline = None # type: ignore
|
147 |
|
@@ -190,39 +192,58 @@ def has_images(messages: List[ChatMessage]) -> bool:
|
|
190 |
@asynccontextmanager
|
191 |
async def lifespan(app: FastAPI):
|
192 |
"""Application lifespan manager for startup and shutdown events"""
|
193 |
-
global
|
194 |
logger.info("π Starting AI Backend Service (Hugging Face Spaces mode)...")
|
195 |
try:
|
196 |
logger.info(f"π₯ Loading model with transformers: {current_model}")
|
197 |
-
|
198 |
-
#
|
199 |
-
|
200 |
-
current_model
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
image_text_pipeline = None
|
|
|
213 |
except Exception as e:
|
214 |
logger.error(f"β Failed to initialize model: {e}")
|
215 |
raise RuntimeError(f"Service initialization failed: {e}")
|
216 |
yield
|
217 |
logger.info("π Shutting down AI Backend Service...")
|
218 |
-
|
219 |
model = None
|
220 |
image_text_pipeline = None
|
221 |
|
222 |
# Initialize FastAPI app
|
223 |
app = FastAPI(
|
224 |
-
title="AI Backend Service -
|
225 |
-
description="OpenAI-compatible chat completion API powered by
|
226 |
version="1.0.0",
|
227 |
lifespan=lifespan
|
228 |
)
|
@@ -239,7 +260,7 @@ app.add_middleware(
|
|
239 |
|
240 |
def ensure_model_ready():
|
241 |
"""Check if transformers model is loaded and ready"""
|
242 |
-
if
|
243 |
raise HTTPException(status_code=503, detail="Service not ready - no model initialized (transformers)")
|
244 |
|
245 |
def convert_messages_to_prompt(messages: List[ChatMessage]) -> str:
|
@@ -367,29 +388,75 @@ def convert_messages_to_gemma_prompt(messages: List[ChatMessage]) -> str:
|
|
367 |
def generate_response_transformers(messages: List[ChatMessage], max_tokens: int = 512, temperature: float = 0.7, top_p: float = 0.95) -> str:
|
368 |
"""Generate response using transformers model with chat template."""
|
369 |
try:
|
370 |
-
#
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
chat_messages
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
|
394 |
except Exception as e:
|
395 |
logger.error(f"Transformers generation failed: {e}")
|
|
|
7 |
# Hugging Face Spaces: Only transformers backend is supported (no vLLM, no llama-cpp/gguf)
|
8 |
|
9 |
"""
|
10 |
+
FastAPI Backend AI Service using Gemma-3n-E4B-it
|
11 |
+
Provides OpenAI-compatible chat completion endpoints powered by google/gemma-3n-E4B-it
|
12 |
"""
|
13 |
import warnings
|
14 |
|
|
|
45 |
# Transformers imports (now fallback for non-GGUF models)
|
46 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoConfig # type: ignore
|
47 |
from transformers import BitsAndBytesConfig # type: ignore
|
48 |
+
# Gemma 3n specific imports
|
49 |
+
from transformers import Gemma3nForConditionalGeneration, AutoProcessor # type: ignore
|
50 |
import torch
|
51 |
# Configure logging
|
52 |
logging.basicConfig(level=logging.INFO)
|
|
|
90 |
return v
|
91 |
|
92 |
class ChatCompletionRequest(BaseModel):
|
93 |
+
model: str = Field(default_factory=lambda: os.environ.get("AI_MODEL", "google/gemma-3n-E4B-it"), description="The model to use for completion")
|
94 |
messages: List[ChatMessage] = Field(..., description="List of messages in the conversation")
|
95 |
max_tokens: Optional[int] = Field(default=512, ge=1, le=2048, description="Maximum tokens to generate")
|
96 |
temperature: Optional[float] = Field(default=0.7, ge=0.0, le=2.0, description="Sampling temperature")
|
|
|
139 |
|
140 |
|
141 |
# Model can be configured via environment variable - defaults to Gemma 3n (transformers format)
|
142 |
+
current_model = os.environ.get("AI_MODEL", "google/gemma-3n-E4B-it")
|
143 |
vision_model = os.environ.get("VISION_MODEL", "Salesforce/blip-image-captioning-base")
|
144 |
|
145 |
# Transformers model support
|
146 |
+
processor = None # For Gemma 3n we use AutoProcessor instead of just tokenizer
|
147 |
model = None
|
148 |
image_text_pipeline = None # type: ignore
|
149 |
|
|
|
192 |
@asynccontextmanager
|
193 |
async def lifespan(app: FastAPI):
|
194 |
"""Application lifespan manager for startup and shutdown events"""
|
195 |
+
global processor, model, image_text_pipeline, current_model
|
196 |
logger.info("π Starting AI Backend Service (Hugging Face Spaces mode)...")
|
197 |
try:
|
198 |
logger.info(f"π₯ Loading model with transformers: {current_model}")
|
199 |
+
|
200 |
+
# For Gemma 3n models, use the specific classes
|
201 |
+
if "gemma-3n" in current_model.lower():
|
202 |
+
processor = AutoProcessor.from_pretrained(current_model)
|
203 |
+
model = Gemma3nForConditionalGeneration.from_pretrained(
|
204 |
+
current_model,
|
205 |
+
low_cpu_mem_usage=True,
|
206 |
+
trust_remote_code=True,
|
207 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
208 |
+
).eval()
|
209 |
+
else:
|
210 |
+
# Fallback for other models
|
211 |
+
processor = AutoTokenizer.from_pretrained(current_model)
|
212 |
+
model = AutoModelForCausalLM.from_pretrained(
|
213 |
+
current_model,
|
214 |
+
low_cpu_mem_usage=True,
|
215 |
+
trust_remote_code=True,
|
216 |
+
)
|
217 |
+
|
218 |
+
logger.info(f"β
Successfully loaded model and processor: {current_model}")
|
219 |
+
|
220 |
+
# Gemma 3n is multimodal, so we don't need a separate image pipeline
|
221 |
+
if "gemma-3n" not in current_model.lower():
|
222 |
+
# Load image pipeline for multimodal support (only for non-Gemma-3n models)
|
223 |
+
try:
|
224 |
+
logger.info(f"πΌοΈ Initializing image captioning pipeline with model: {vision_model}")
|
225 |
+
image_text_pipeline = pipeline("image-to-text", model=vision_model)
|
226 |
+
logger.info("β
Image captioning pipeline loaded successfully")
|
227 |
+
except Exception as e:
|
228 |
+
logger.warning(f"β οΈ Could not load image captioning pipeline: {e}")
|
229 |
+
image_text_pipeline = None
|
230 |
+
else:
|
231 |
+
logger.info("β
Gemma 3n has built-in multimodal support")
|
232 |
image_text_pipeline = None
|
233 |
+
|
234 |
except Exception as e:
|
235 |
logger.error(f"β Failed to initialize model: {e}")
|
236 |
raise RuntimeError(f"Service initialization failed: {e}")
|
237 |
yield
|
238 |
logger.info("π Shutting down AI Backend Service...")
|
239 |
+
processor = None
|
240 |
model = None
|
241 |
image_text_pipeline = None
|
242 |
|
243 |
# Initialize FastAPI app
|
244 |
app = FastAPI(
|
245 |
+
title="AI Backend Service - Gemma 3n",
|
246 |
+
description="OpenAI-compatible chat completion API powered by google/gemma-3n-E4B-it",
|
247 |
version="1.0.0",
|
248 |
lifespan=lifespan
|
249 |
)
|
|
|
260 |
|
261 |
def ensure_model_ready():
|
262 |
"""Check if transformers model is loaded and ready"""
|
263 |
+
if processor is None or model is None:
|
264 |
raise HTTPException(status_code=503, detail="Service not ready - no model initialized (transformers)")
|
265 |
|
266 |
def convert_messages_to_prompt(messages: List[ChatMessage]) -> str:
|
|
|
388 |
def generate_response_transformers(messages: List[ChatMessage], max_tokens: int = 512, temperature: float = 0.7, top_p: float = 0.95) -> str:
|
389 |
"""Generate response using transformers model with chat template."""
|
390 |
try:
|
391 |
+
# Check if we're using Gemma 3n
|
392 |
+
if "gemma-3n" in current_model.lower():
|
393 |
+
# Gemma 3n specific handling
|
394 |
+
# Convert messages to HuggingFace format for chat template
|
395 |
+
chat_messages = []
|
396 |
+
for m in messages:
|
397 |
+
# Gemma 3n supports multimodal, but for now we'll handle text only
|
398 |
+
if isinstance(m.content, str):
|
399 |
+
content = [{"type": "text", "text": m.content}]
|
400 |
+
else:
|
401 |
+
# Extract text content for now (image support can be added later)
|
402 |
+
text_content, _ = extract_text_and_images(m.content)
|
403 |
+
content = [{"type": "text", "text": text_content}]
|
404 |
+
|
405 |
+
chat_messages.append({"role": m.role, "content": content})
|
406 |
+
|
407 |
+
# Apply chat template using processor
|
408 |
+
inputs = processor.apply_chat_template(
|
409 |
+
chat_messages,
|
410 |
+
add_generation_prompt=True,
|
411 |
+
tokenize=True,
|
412 |
+
return_dict=True,
|
413 |
+
return_tensors="pt",
|
414 |
+
)
|
415 |
+
|
416 |
+
# Generate with Gemma 3n
|
417 |
+
input_len = inputs["input_ids"].shape[-1]
|
418 |
+
with torch.inference_mode():
|
419 |
+
generation = model.generate(
|
420 |
+
**inputs,
|
421 |
+
max_new_tokens=max_tokens,
|
422 |
+
temperature=temperature,
|
423 |
+
top_p=top_p,
|
424 |
+
do_sample=temperature > 0,
|
425 |
+
)
|
426 |
+
generation = generation[0][input_len:]
|
427 |
+
|
428 |
+
# Decode the response
|
429 |
+
generated_text = processor.decode(generation, skip_special_tokens=True)
|
430 |
+
return generated_text.strip()
|
431 |
+
|
432 |
+
else:
|
433 |
+
# Fallback for other models
|
434 |
+
# Convert messages to HuggingFace format for chat template
|
435 |
+
chat_messages = []
|
436 |
+
for m in messages:
|
437 |
+
content_str = m.content if isinstance(m.content, str) else extract_text_and_images(m.content)[0]
|
438 |
+
chat_messages.append({"role": m.role, "content": content_str})
|
439 |
+
|
440 |
+
# Apply chat template and tokenize
|
441 |
+
inputs = processor.apply_chat_template(
|
442 |
+
chat_messages,
|
443 |
+
add_generation_prompt=True,
|
444 |
+
tokenize=True,
|
445 |
+
return_dict=True,
|
446 |
+
return_tensors="pt",
|
447 |
+
)
|
448 |
+
# Generate response
|
449 |
+
outputs = model.generate(
|
450 |
+
input_ids=inputs["input_ids"],
|
451 |
+
attention_mask=inputs.get("attention_mask"),
|
452 |
+
max_new_tokens=max_tokens,
|
453 |
+
temperature=temperature,
|
454 |
+
top_p=top_p,
|
455 |
+
do_sample=temperature > 0,
|
456 |
+
)
|
457 |
+
# Decode only the newly generated tokens (exclude input)
|
458 |
+
generated_text = processor.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
459 |
+
return generated_text.strip()
|
460 |
|
461 |
except Exception as e:
|
462 |
logger.error(f"Transformers generation failed: {e}")
|
requirements.txt
CHANGED
@@ -3,11 +3,19 @@
|
|
3 |
# Hugging Face Spaces requirements (transformers backend only)
|
4 |
fastapi
|
5 |
uvicorn
|
6 |
-
transformers
|
7 |
torch
|
8 |
python-dotenv
|
9 |
httpx
|
10 |
requests
|
11 |
Pillow
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# Optional: gradio for demo UI
|
13 |
# gradio
|
|
|
3 |
# Hugging Face Spaces requirements (transformers backend only)
|
4 |
fastapi
|
5 |
uvicorn
|
6 |
+
transformers>=4.53.0
|
7 |
torch
|
8 |
python-dotenv
|
9 |
httpx
|
10 |
requests
|
11 |
Pillow
|
12 |
+
|
13 |
+
# Required dependencies for Gemma models
|
14 |
+
protobuf
|
15 |
+
tiktoken
|
16 |
+
sentencepiece>=0.2.0
|
17 |
+
tokenizers
|
18 |
+
regex
|
19 |
+
|
20 |
# Optional: gradio for demo UI
|
21 |
# gradio
|
test_app_structure.py
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
Test script to verify the FastAPI app can be imported and started
|
4 |
-
"""
|
5 |
-
|
6 |
-
import sys
|
7 |
-
import os
|
8 |
-
|
9 |
-
# Add current directory to path
|
10 |
-
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
|
11 |
-
|
12 |
-
try:
|
13 |
-
# Test imports
|
14 |
-
print("Testing imports...")
|
15 |
-
from backend_service import app
|
16 |
-
print("β
Successfully imported FastAPI app from backend_service")
|
17 |
-
|
18 |
-
# Test app type
|
19 |
-
from fastapi import FastAPI
|
20 |
-
if isinstance(app, FastAPI):
|
21 |
-
print("β
App is a valid FastAPI instance")
|
22 |
-
else:
|
23 |
-
print("β App is not a FastAPI instance")
|
24 |
-
sys.exit(1)
|
25 |
-
|
26 |
-
# Test app attributes
|
27 |
-
print(f"β
App title: {app.title}")
|
28 |
-
print(f"β
App version: {app.version}")
|
29 |
-
|
30 |
-
print("\nπ All tests passed! The app is ready for Hugging Face Spaces")
|
31 |
-
|
32 |
-
except ImportError as e:
|
33 |
-
print(f"β Import error: {e}")
|
34 |
-
print("This is expected if you don't have all dependencies installed locally.")
|
35 |
-
print("The Hugging Face Space will install them from requirements.txt")
|
36 |
-
|
37 |
-
except Exception as e:
|
38 |
-
print(f"β Unexpected error: {e}")
|
39 |
-
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_deps.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Test script to verify the transformers dependencies are working
|
4 |
+
"""
|
5 |
+
|
6 |
+
def test_imports():
|
7 |
+
"""Test that all required transformers imports work"""
|
8 |
+
try:
|
9 |
+
print("Testing transformers imports...")
|
10 |
+
|
11 |
+
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
|
12 |
+
print("β
Gemma3nForConditionalGeneration import successful")
|
13 |
+
|
14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
15 |
+
print("β
Standard transformers imports successful")
|
16 |
+
|
17 |
+
import torch
|
18 |
+
print("β
PyTorch import successful")
|
19 |
+
|
20 |
+
import sentencepiece
|
21 |
+
print("β
SentencePiece import successful")
|
22 |
+
|
23 |
+
import tiktoken
|
24 |
+
print("β
TikToken import successful")
|
25 |
+
|
26 |
+
import protobuf
|
27 |
+
print("β
Protobuf import successful")
|
28 |
+
|
29 |
+
print("\nπ All imports successful! Ready for Hugging Face Spaces deployment")
|
30 |
+
return True
|
31 |
+
|
32 |
+
except ImportError as e:
|
33 |
+
print(f"β Import error: {e}")
|
34 |
+
return False
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
test_imports()
|