""" FastAPI Backend AI Service using Gemma-3n-E4B-it-GGUF Provides OpenAI-compatible chat completion endpoints powered by llama-cpp-python """ import os import warnings import logging import time from contextlib import asynccontextmanager from typing import List, Dict, Any, Optional, Union from fastapi import FastAPI, HTTPException, Request from fastapi.responses import StreamingResponse, JSONResponse from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, Field, field_validator # Import llama-cpp-python for GGUF model support try: from llama_cpp import Llama llama_cpp_available = True except ImportError: llama_cpp_available = False import uvicorn # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Pydantic models for OpenAI-compatible API (same as original) class ChatMessage(BaseModel): role: str = Field(..., description="The role of the message author") content: str = Field(..., description="The content of the message") @field_validator('role') @classmethod def validate_role(cls, v: str) -> str: if v not in ["system", "user", "assistant"]: raise ValueError("Role must be one of: system, user, assistant") return v class ChatCompletionRequest(BaseModel): model: str = Field(default="gemma-3n-e4b-it", description="The model to use for completion") messages: List[ChatMessage] = Field(..., description="List of messages in the conversation") max_tokens: Optional[int] = Field(default=512, ge=1, le=2048, description="Maximum tokens to generate") temperature: Optional[float] = Field(default=1.0, ge=0.0, le=2.0, description="Sampling temperature") top_p: Optional[float] = Field(default=0.95, ge=0.0, le=1.0, description="Top-p sampling") top_k: Optional[int] = Field(default=64, ge=1, le=100, description="Top-k sampling") stream: Optional[bool] = Field(default=False, description="Whether to stream responses") class ChatCompletionChoice(BaseModel): index: int message: ChatMessage finish_reason: str class ChatCompletionResponse(BaseModel): id: str object: str = "chat.completion" created: int model: str choices: List[ChatCompletionChoice] class HealthResponse(BaseModel): status: str model: str version: str class ModelInfo(BaseModel): id: str object: str = "model" created: int owned_by: str = "huggingface" class ModelsResponse(BaseModel): object: str = "list" data: List[ModelInfo] # Global variables for model management current_model = os.environ.get("AI_MODEL", "unsloth/gemma-3n-E4B-it-GGUF") llm = None def create_gemma_chat_template(): """ Create a custom chat template for Gemma 3n Based on the format: user\n{user_message}\nmodel\n{assistant_response} """ return """{% for message in messages %}{% if message['role'] == 'user' %}user {{ message['content'] }} {% elif message['role'] == 'assistant' %}model {{ message['content'] }} {% elif message['role'] == 'system' %}system {{ message['content'] }} {% endif %}{% endfor %}model """ @asynccontextmanager async def lifespan(app: FastAPI): """Application lifespan manager for startup and shutdown events""" global llm logger.info("🚀 Starting Gemma 3n Backend Service...") if not llama_cpp_available: logger.error("❌ llama-cpp-python is not available. Please install with: pip install llama-cpp-python") raise RuntimeError("llama-cpp-python not available") try: logger.info(f"📥 Loading Gemma 3n model from {current_model}...") # Configure model parameters for Gemma 3n # Using recommended settings from Gemma 3n documentation llm = Llama.from_pretrained( repo_id=current_model, filename="*q4_k_m.gguf", # Start with Q4_K_M for good balance verbose=True, # Gemma 3n specific settings n_ctx=4096, # Start with 4K context, can be increased to 32K n_threads=4, # Adjust based on your CPU n_gpu_layers=-1, # Use all GPU layers if CUDA available # Chat template for Gemma 3n format chat_format="gemma", # Try built-in gemma format first ) logger.info("✅ Successfully loaded Gemma 3n model") except Exception as e: logger.error(f"❌ Failed to initialize Gemma 3n model: {e}") # Fallback to try without from_pretrained try: logger.info("🔄 Trying alternative model loading approach...") # You might need to download the model file locally first logger.warning("⚠️ Please download the GGUF model file locally and update the path") logger.warning("⚠️ You can download from: https://huggingface.co/unsloth/gemma-3n-E4B-it-GGUF") # For now, we'll raise an error with instructions raise RuntimeError( "Model loading failed. Please download the GGUF model locally:\n" "1. Visit: https://huggingface.co/unsloth/gemma-3n-E4B-it-GGUF\n" "2. Download a GGUF file (recommended: gemma-3n-e4b-it-q4_k_m.gguf)\n" "3. Update the model path in the code" ) except Exception as fallback_error: logger.error(f"❌ Fallback loading also failed: {fallback_error}") raise RuntimeError(f"Service initialization failed: {fallback_error}") yield logger.info("🔄 Shutting down Gemma 3n Backend Service...") if llm: # Clean up model resources llm = None # Initialize FastAPI app app = FastAPI( title="Gemma 3n Backend Service", description="OpenAI-compatible chat completion API powered by Gemma-3n-E4B-it-GGUF", version="1.0.0", lifespan=lifespan ) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], # Configure appropriately for production allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) def ensure_model_ready(): """Check if model is loaded and ready""" if llm is None: raise HTTPException(status_code=503, detail="Service not ready - Gemma 3n model not initialized") def convert_messages_to_prompt(messages: List[ChatMessage]) -> str: """Convert OpenAI messages format to Gemma 3n chat format""" # Gemma 3n uses specific format with and prompt_parts = [""] for message in messages: role = message.role content = message.content if role == "system": prompt_parts.append(f"system\n{content}") elif role == "user": prompt_parts.append(f"user\n{content}") elif role == "assistant": prompt_parts.append(f"model\n{content}") # Add the start for model response prompt_parts.append("model\n") return "\n".join(prompt_parts) async def generate_response_gemma( messages: List[ChatMessage], max_tokens: int = 512, temperature: float = 1.0, top_p: float = 0.95, top_k: int = 64 ) -> str: """Generate response using Gemma 3n model""" ensure_model_ready() try: # Use the chat completion method if available if hasattr(llm, 'create_chat_completion'): # Convert to dict format for llama-cpp-python messages_dict = [{"role": msg.role, "content": msg.content} for msg in messages] response = llm.create_chat_completion( messages=messages_dict, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, stop=["", ""] # Gemma 3n stop tokens ) return response['choices'][0]['message']['content'].strip() else: # Fallback to direct prompt completion prompt = convert_messages_to_prompt(messages) response = llm( prompt, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, stop=["", ""], echo=False ) return response['choices'][0]['text'].strip() except Exception as e: logger.error(f"Generation failed: {e}") return "I apologize, but I'm having trouble generating a response right now. Please try again." @app.get("/", response_class=JSONResponse) async def root() -> Dict[str, Any]: """Root endpoint with service information""" return { "message": "Gemma 3n Backend Service is running!", "model": current_model, "version": "1.0.0", "endpoints": { "health": "/health", "models": "/v1/models", "chat_completions": "/v1/chat/completions" } } @app.get("/health", response_model=HealthResponse) async def health_check(): """Health check endpoint""" return HealthResponse( status="healthy" if (llm is not None) else "unhealthy", model=current_model, version="1.0.0" ) @app.get("/v1/models", response_model=ModelsResponse) async def list_models(): """List available models (OpenAI-compatible)""" models = [ ModelInfo( id="gemma-3n-e4b-it", created=int(time.time()), owned_by="google" ) ] return ModelsResponse(data=models) @app.post("/v1/chat/completions", response_model=ChatCompletionResponse) async def create_chat_completion( request: ChatCompletionRequest ) -> ChatCompletionResponse: """Create a chat completion (OpenAI-compatible) using Gemma 3n""" try: if not request.messages: raise HTTPException(status_code=400, detail="Messages cannot be empty") logger.info(f"Generating Gemma 3n response for {len(request.messages)} messages") response_text = await generate_response_gemma( request.messages, request.max_tokens or 512, request.temperature or 1.0, request.top_p or 0.95, request.top_k or 64 ) response_text = response_text.strip() if response_text else "No response generated." return ChatCompletionResponse( id=f"chatcmpl-{int(time.time())}", created=int(time.time()), model=request.model, choices=[ChatCompletionChoice( index=0, message=ChatMessage(role="assistant", content=response_text), finish_reason="stop" )] ) except Exception as e: logger.error(f"Error in chat completion: {e}") raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") # Main entry point if __name__ == "__main__": import uvicorn uvicorn.run("gemma_backend_service:app", host="0.0.0.0", port=8000, reload=True)