#!/usr/bin/env python3 """ Working Gemma 3n GGUF Backend Service Minimal FastAPI backend using only llama-cpp-python for GGUF models """ import os import logging import time from contextlib import asynccontextmanager from typing import List, Dict, Any, Optional import uuid import sys import subprocess import threading from pathlib import Path import signal # Use signal.SIGTERM for process termination from fastapi import FastAPI, HTTPException, Query from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, Field, field_validator # Import llama-cpp-python for GGUF model support try: from llama_cpp import Llama llama_cpp_available = True except ImportError: llama_cpp_available = False import uvicorn import sqlite3 import json # For persisting job metadata # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Pydantic models for OpenAI-compatible API class ChatMessage(BaseModel): role: str = Field(..., description="The role of the message author") content: str = Field(..., description="The content of the message") @field_validator('role') @classmethod def validate_role(cls, v: str) -> str: if v not in ["system", "user", "assistant"]: raise ValueError("Role must be one of: system, user, assistant") return v class ChatCompletionRequest(BaseModel): model: str = Field(default="gemma-3n-e4b-it", description="The model to use for completion") messages: List[ChatMessage] = Field(..., description="List of messages in the conversation") max_tokens: Optional[int] = Field(default=256, ge=1, le=1024, description="Maximum tokens to generate (reduced for memory efficiency)") temperature: Optional[float] = Field(default=1.0, ge=0.0, le=2.0, description="Sampling temperature") top_p: Optional[float] = Field(default=0.95, ge=0.0, le=1.0, description="Top-p sampling") top_k: Optional[int] = Field(default=64, ge=1, le=100, description="Top-k sampling") stream: Optional[bool] = Field(default=False, description="Whether to stream responses") class ChatCompletionChoice(BaseModel): index: int message: ChatMessage finish_reason: str class ChatCompletionResponse(BaseModel): id: str object: str = "chat.completion" created: int model: str choices: List[ChatCompletionChoice] class HealthResponse(BaseModel): status: str model: str version: str backend: str from pathlib import Path # Global variables for model management current_model = os.environ.get("AI_MODEL", "unsloth/gemma-3n-E4B-it-GGUF") llm = None def convert_messages_to_gemma_prompt(messages: List[ChatMessage]) -> str: """Convert OpenAI messages format to Gemma 3n chat format.""" # Gemma 3n uses specific format with and prompt_parts = [""] for message in messages: role = message.role content = message.content if role == "system": prompt_parts.append(f"system\n{content}") elif role == "user": prompt_parts.append(f"user\n{content}") elif role == "assistant": prompt_parts.append(f"model\n{content}") # Add the start for model response prompt_parts.append("model\n") return "\n".join(prompt_parts) @asynccontextmanager async def lifespan(app: FastAPI): """Application lifespan manager for startup and shutdown events""" global llm logger.info("๐Ÿš€ Starting Gemma 3n GGUF Backend Service...") if os.environ.get("DEMO_MODE", "").strip() not in ("", "0", "false", "False"): logger.info("๐Ÿงช DEMO_MODE enabled: skipping model load") llm = None yield logger.info("๐Ÿ”„ Shutting down Gemma 3n Backend Service (demo mode)...") return if not llama_cpp_available: logger.error("โŒ llama-cpp-python is not available. Please install with: pip install llama-cpp-python") raise RuntimeError("llama-cpp-python not available") try: logger.info(f"๐Ÿ“ฅ Loading Gemma 3n GGUF model from {current_model}...") # Configure model parameters optimized for HF Spaces memory constraints llm = Llama.from_pretrained( repo_id=current_model, filename="*Q4_0.gguf", # Use Q4_0 instead of Q4_K_M for lower memory usage verbose=True, # Memory-optimized settings for HF Spaces n_ctx=2048, # Reduced context length to save memory (was 4096) n_threads=2, # Fewer threads for lower memory usage (was 4) n_gpu_layers=0, # Force CPU-only to avoid GPU memory issues # Additional memory optimizations n_batch=512, # Smaller batch size to reduce memory peaks use_mmap=True, # Use memory mapping to reduce RAM usage use_mlock=False, # Don't lock memory pages low_vram=True, # Enable low VRAM mode for additional memory savings # Chat template for Gemma 3n format chat_format="gemma", # Try built-in gemma format first ) logger.info("โœ… Successfully loaded Gemma 3n GGUF model with memory optimizations") except Exception as e: logger.error(f"โŒ Failed to initialize Gemma 3n model: {e}") logger.warning("โš ๏ธ Please download the GGUF model file locally and update the path") logger.warning("โš ๏ธ You can download from: https://huggingface.co/unsloth/gemma-3n-E4B-it-GGUF") # For demo purposes, we'll continue without the model logger.info("๐Ÿ”„ Starting service in demo mode (responses will be mocked)") yield logger.info("๐Ÿ”„ Shutting down Gemma 3n Backend Service...") if llm: # Clean up model resources llm = None # Initialize FastAPI app app = FastAPI( title="Gemma 3n GGUF Backend Service", description="OpenAI-compatible chat completion API powered by Gemma-3n-E4B-it-GGUF", version="1.0.0", lifespan=lifespan ) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], # Configure appropriately for production allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) def ensure_model_ready(): """Check if model is loaded and ready""" # For demo mode, we'll allow the service to run even without a model pass def generate_response_gguf(messages: List[ChatMessage], max_tokens: int = 256, temperature: float = 1.0, top_p: float = 0.95, top_k: int = 64) -> str: """Generate response using GGUF model via llama-cpp-python (memory-optimized).""" if llm is None: # Demo mode response return "๐Ÿค– Demo mode: Gemma 3n model not loaded. This would be a real response from the Gemma 3n model. Please download the GGUF model from https://huggingface.co/unsloth/gemma-3n-E4B-it-GGUF" # Limit max_tokens for memory efficiency on HF Spaces max_tokens = min(max_tokens, 512) # Cap at 512 tokens max try: # Use the chat completion method if available if hasattr(llm, 'create_chat_completion'): # Convert to dict format for llama-cpp-python messages_dict = [{"role": msg.role, "content": msg.content} for msg in messages] response = llm.create_chat_completion( messages=messages_dict, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, stop=["", "", ""] # Gemma 3n stop tokens ) return response['choices'][0]['message']['content'].strip() else: # Fallback to direct prompt completion prompt = convert_messages_to_gemma_prompt(messages) response = llm( prompt, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, stop=["", "", ""], echo=False ) return response['choices'][0]['text'].strip() except Exception as e: logger.error(f"GGUF generation failed: {e}") return "I apologize, but I'm having trouble generating a response right now. Please try again." @app.get("/", response_class=JSONResponse) async def root() -> Dict[str, Any]: """Root endpoint with service information""" return { "message": "Gemma 3n GGUF Backend Service is running!", "model": current_model, "version": "1.0.0", "backend": "llama-cpp-python", "model_loaded": llm is not None, "endpoints": { "health": "/health", "chat_completions": "/v1/chat/completions" } } @app.get("/health", response_model=HealthResponse) async def health_check(): """Health check endpoint""" return HealthResponse( status="healthy" if (llm is not None) else "demo_mode", model=current_model, version="1.0.0", backend="llama-cpp-python" ) @app.post("/v1/chat/completions", response_model=ChatCompletionResponse) async def create_chat_completion( request: ChatCompletionRequest ) -> ChatCompletionResponse: """Create a chat completion (OpenAI-compatible) using Gemma 3n GGUF""" try: ensure_model_ready() if not request.messages: raise HTTPException(status_code=400, detail="Messages cannot be empty") logger.info(f"Generating Gemma 3n response for {len(request.messages)} messages") response_text = generate_response_gguf( request.messages, request.max_tokens or 512, request.temperature or 1.0, request.top_p or 0.95, request.top_k or 64 ) response_text = response_text.strip() if response_text else "No response generated." return ChatCompletionResponse( id=f"chatcmpl-{int(time.time())}", created=int(time.time()), model=request.model, choices=[ChatCompletionChoice( index=0, message=ChatMessage(role="assistant", content=response_text), finish_reason="stop" )] ) except Exception as e: logger.error(f"Error in chat completion: {e}") raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") # ----------------------------- # Training Job Management (Unsloth) # ----------------------------- # Persistent job store: in-memory dict backed by SQLite TRAIN_JOBS: Dict[str, Dict[str, Any]] = {} # Initialize SQLite DB for job persistence DB_PATH = Path(os.environ.get("JOB_DB_PATH", "./jobs.db")) conn = sqlite3.connect(str(DB_PATH), check_same_thread=False) cursor = conn.cursor() cursor.execute( """ CREATE TABLE IF NOT EXISTS jobs ( job_id TEXT PRIMARY KEY, data TEXT NOT NULL ) """ ) conn.commit() def load_jobs() -> None: cursor.execute("SELECT job_id, data FROM jobs") for job_id, data in cursor.fetchall(): TRAIN_JOBS[job_id] = json.loads(data) def save_job(job_id: str) -> None: cursor.execute( "INSERT OR REPLACE INTO jobs (job_id, data) VALUES (?, ?)", (job_id, json.dumps(TRAIN_JOBS[job_id])) ) conn.commit() # Load existing jobs on startup load_jobs() TRAIN_DIR = Path(os.environ.get("TRAIN_DIR", "./training_runs")).resolve() TRAIN_DIR.mkdir(parents=True, exist_ok=True) # Maximum concurrent training jobs MAX_CONCURRENT_JOBS = int(os.environ.get("MAX_CONCURRENT_JOBS", "5")) def _start_training_subprocess(job_id: str, args: Dict[str, Any]) -> subprocess.Popen[Any]: """Spawn a subprocess to run the Unsloth fine-tuning script.""" logs_dir = TRAIN_DIR / job_id logs_dir.mkdir(parents=True, exist_ok=True) log_file = open(logs_dir / "train.log", "w", encoding="utf-8") # Store log file handle to close later TRAIN_JOBS.setdefault(job_id, {})["log_file"] = log_file save_job(job_id) # Build absolute script path to avoid module/package resolution issues script_path = (Path(__file__).parent / "training" / "train_gemma_unsloth.py").resolve() # Verify training script exists if not script_path.exists(): logger.error(f"Training script not found at {script_path}") raise HTTPException(status_code=500, detail=f"Training script not found at {script_path}") python_exec = sys.executable cmd = [ python_exec, str(script_path), "--job-id", job_id, "--output-dir", str(logs_dir), ] # Optional user-specified args def _extend(k: str, v: Any): if v is None: return if isinstance(v, bool): cmd.extend([f"--{k}"] if v else []) else: cmd.extend([f"--{k}", str(v)]) _extend("dataset", args.get("dataset")) _extend("text-field", args.get("text_field")) _extend("prompt-field", args.get("prompt_field")) _extend("response-field", args.get("response_field")) _extend("max-steps", args.get("max_steps")) _extend("epochs", args.get("epochs")) _extend("lr", args.get("lr")) _extend("batch-size", args.get("batch_size")) _extend("gradient-accumulation", args.get("gradient_accumulation")) _extend("lora-r", args.get("lora_r")) _extend("lora-alpha", args.get("lora_alpha")) _extend("cutoff-len", args.get("cutoff_len")) _extend("model-id", args.get("model_id")) _extend("use-bf16", args.get("use_bf16")) _extend("use-fp16", args.get("use_fp16")) _extend("seed", args.get("seed")) _extend("dry-run", args.get("dry_run")) logger.info(f"๐Ÿงต Starting training subprocess for job {job_id}: {' '.join(cmd)}") logger.info(f"๐Ÿ Using interpreter: {python_exec}") proc = subprocess.Popen(cmd, stdout=log_file, stderr=subprocess.STDOUT, cwd=str(Path(__file__).parent)) return proc def _watch_process(job_id: str, proc: subprocess.Popen[Any]): """Monitor a training process and update job state on exit.""" return_code = proc.wait() status = "completed" if return_code == 0 else "failed" TRAIN_JOBS[job_id]["status"] = status TRAIN_JOBS[job_id]["return_code"] = return_code TRAIN_JOBS[job_id]["ended_at"] = int(time.time()) # Persist updated job status save_job(job_id) # Close the log file handle to prevent resource leaks log_file = TRAIN_JOBS[job_id].get("log_file") if log_file: try: log_file.close() except Exception as close_err: logger.warning(f"Failed to close log file for job {job_id}: {close_err}") logger.info(f"๐Ÿ Training job {job_id} finished with status={status}, code={return_code}") class StartTrainingRequest(BaseModel): dataset: str = Field(..., description="HF dataset name or path to local JSONL/JSON file") model_id: Optional[str] = Field(default="unsloth/gemma-3n-E4B-it", description="Base model for training (HF Transformers format)") text_field: Optional[str] = Field(default=None, description="Single text field name (SFT)") prompt_field: Optional[str] = Field(default=None, description="Prompt/instruction field (chat data)") response_field: Optional[str] = Field(default=None, description="Response/output field (chat data)") max_steps: Optional[int] = Field(default=None) epochs: Optional[int] = Field(default=1) lr: Optional[float] = Field(default=2e-4) batch_size: Optional[int] = Field(default=1) gradient_accumulation: Optional[int] = Field(default=8) lora_r: Optional[int] = Field(default=16) lora_alpha: Optional[int] = Field(default=32) cutoff_len: Optional[int] = Field(default=4096) use_bf16: Optional[bool] = Field(default=True) use_fp16: Optional[bool] = Field(default=False) seed: Optional[int] = Field(default=42) dry_run: Optional[bool] = Field(default=False, description="Write DONE and exit without running (for CI/macOS)") class StartTrainingResponse(BaseModel): job_id: str status: str output_dir: str class TrainStatusResponse(BaseModel): job_id: str status: str created_at: int started_at: Optional[int] = None ended_at: Optional[int] = None output_dir: Optional[str] = None return_code: Optional[int] = None @app.post("/train/start", response_model=StartTrainingResponse) def start_training(req: StartTrainingRequest): """Start a background Unsloth fine-tuning job. Returns a job_id to poll.""" # Enforce maximum concurrent training jobs running_jobs = sum(1 for job in TRAIN_JOBS.values() if job.get("status") == "running") if running_jobs >= MAX_CONCURRENT_JOBS: raise HTTPException( status_code=429, detail=f"Maximum concurrent training jobs reached ({MAX_CONCURRENT_JOBS}). Try again later." ) job_id = uuid.uuid4().hex[:12] now = int(time.time()) output_dir = str((TRAIN_DIR / job_id).resolve()) TRAIN_JOBS[job_id] = { "status": "starting", "created_at": now, "started_at": now, "args": req.model_dump(), "output_dir": output_dir, } save_job(job_id) try: proc = _start_training_subprocess(job_id, req.model_dump()) TRAIN_JOBS[job_id]["status"] = "running" TRAIN_JOBS[job_id]["pid"] = proc.pid save_job(job_id) watcher = threading.Thread(target=_watch_process, args=(job_id, proc), daemon=True) watcher.start() return StartTrainingResponse(job_id=job_id, status="running", output_dir=output_dir) except Exception as e: logger.exception("Failed to start training job") TRAIN_JOBS[job_id]["status"] = "failed_to_start" save_job(job_id) raise HTTPException(status_code=500, detail=f"Failed to start training: {e}") @app.get("/train/status/{job_id}", response_model=TrainStatusResponse) def train_status(job_id: str): job = TRAIN_JOBS.get(job_id) if not job: raise HTTPException(status_code=404, detail="Job not found") return TrainStatusResponse( job_id=job_id, status=job.get("status", "unknown"), created_at=job.get("created_at", 0), started_at=job.get("started_at"), ended_at=job.get("ended_at"), output_dir=job.get("output_dir"), return_code=job.get("return_code"), ) @app.get("/train/logs/{job_id}") def train_logs( job_id: str, tail: int = Query(200, ge=0, le=1000, description="Number of lines to tail, between 0 and 1000"), ): job = TRAIN_JOBS.get(job_id) if not job: raise HTTPException(status_code=404, detail="Job not found") log_path = Path(job["output_dir"]) / "train.log" if not log_path.exists(): return {"job_id": job_id, "logs": "(no logs yet)"} try: with open(log_path, "r", encoding="utf-8", errors="ignore") as f: lines = f.readlines()[-tail:] return {"job_id": job_id, "logs": "".join(lines)} except Exception as e: raise HTTPException(status_code=500, detail=f"Failed to read logs: {e}") @app.post("/train/stop/{job_id}") def train_stop(job_id: str): job = TRAIN_JOBS.get(job_id) if not job: raise HTTPException(status_code=404, detail="Job not found") pid = job.get("pid") if not pid: raise HTTPException(status_code=400, detail="Job does not have an active PID") try: os.kill(pid, signal.SIGTERM) except ProcessLookupError: logger.warning( f"Process {pid} for job {job_id} not found; may have exited already" ) job["status"] = "stopping_failed" save_job(job_id) return {"job_id": job_id, "status": job["status"]} except Exception as e: raise HTTPException(status_code=500, detail=f"Failed to stop job: {e}") else: job["status"] = "stopping" save_job(job_id) return {"job_id": job_id, "status": "stopping"} # Main entry point if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)