#!/usr/bin/env python3 """ GGUF Backend with Native Transformers Support Uses transformers library's built-in GGUF loading (no llama-cpp-python needed) """ import os import logging from contextlib import asynccontextmanager from typing import List, Dict, Any, Optional import uuid import time from fastapi import FastAPI, HTTPException from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, Field, field_validator # Import transformers with GGUF support import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Pydantic models for OpenAI-compatible API class ChatMessage(BaseModel): role: str = Field(..., description="The role of the message author") content: str = Field(..., description="The content of the message") @field_validator('role') @classmethod def validate_role(cls, v: str) -> str: if v not in ["system", "user", "assistant"]: raise ValueError("Role must be one of: system, user, assistant") return v class ChatCompletionRequest(BaseModel): model: str = Field(default="gemma-3n-e4b-it", description="The model to use for completion") messages: List[ChatMessage] = Field(..., description="List of messages in the conversation") max_tokens: Optional[int] = Field(default=256, ge=1, le=1024, description="Maximum tokens to generate") temperature: Optional[float] = Field(default=1.0, ge=0.0, le=2.0, description="Sampling temperature") top_p: Optional[float] = Field(default=0.95, ge=0.0, le=1.0, description="Top-p sampling") stream: Optional[bool] = Field(default=False, description="Whether to stream responses") class ChatCompletionChoice(BaseModel): index: int message: ChatMessage finish_reason: str class ChatCompletionResponse(BaseModel): id: str object: str = "chat.completion" created: int model: str choices: List[ChatCompletionChoice] class HealthResponse(BaseModel): status: str model: str version: str backend: str quantization: str # Global variables for model management current_model = os.environ.get("AI_MODEL", "unsloth/gemma-3n-E4B-it-GGUF") gguf_filename = os.environ.get("GGUF_FILE", "gemma-3n-E4B-it-Q4_K_M.gguf") tokenizer = None model = None text_pipeline = None @asynccontextmanager async def lifespan(app: FastAPI): """Application lifespan manager with GGUF model loading via transformers""" global tokenizer, model, text_pipeline logger.info("๐Ÿš€ Starting GGUF Backend Service (Transformers Native)") if os.environ.get("DEMO_MODE", "").strip() not in ("", "0", "false", "False"): logger.info("๐Ÿงช DEMO_MODE enabled: skipping model load") yield logger.info("๐Ÿ”„ Shutting down GGUF Backend Service (demo mode)...") return try: logger.info(f"๐Ÿ“ฅ Loading GGUF model: {current_model}") logger.info(f"๐ŸŽฏ GGUF file pattern: {gguf_filename}") # Load tokenizer first tokenizer = AutoTokenizer.from_pretrained( current_model, gguf_file=gguf_filename, # Add gguf_file parameter for tokenizer too trust_remote_code=True, use_fast=True ) # Ensure pad token exists if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Load GGUF model using native transformers support logger.info("โš™๏ธ Loading GGUF model with transformers native support...") model = AutoModelForCausalLM.from_pretrained( current_model, gguf_file=gguf_filename, # Key parameter for GGUF loading torch_dtype=torch.float32, # CPU-compatible device_map="auto", # Let transformers handle device placement low_cpu_mem_usage=True, # Memory optimization trust_remote_code=True, ) # Create pipeline for efficient generation text_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256, do_sample=True, temperature=1.0, top_p=0.95, pad_token_id=tokenizer.eos_token_id, ) logger.info("โœ… Successfully loaded GGUF model with transformers") logger.info(f"๐Ÿ“Š Model: {current_model}") logger.info(f"๐Ÿ”ง GGUF File: {gguf_filename}") logger.info(f"๐Ÿง  Backend: Transformers native GGUF support") except Exception as e: logger.error(f"โŒ Failed to initialize GGUF model: {e}") logger.info("๐Ÿ”„ Starting service in demo mode") model = None tokenizer = None text_pipeline = None yield logger.info("๐Ÿ”„ Shutting down GGUF Backend Service...") # Clean up model resources if model: del model if tokenizer: del tokenizer if text_pipeline: del text_pipeline # Initialize FastAPI app app = FastAPI( title="GGUF Backend Service (Transformers Native)", description="Memory-efficient GGUF model API using transformers native support", version="1.0.0", lifespan=lifespan ) # Configure CORS app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) def convert_messages_to_prompt(messages: List[ChatMessage]) -> str: """Convert OpenAI messages format to Gemma 3n chat format.""" prompt_parts = [] for message in messages: role = message.role content = message.content.strip() if role == "system": prompt_parts.append(f"system\n{content}") elif role == "user": prompt_parts.append(f"user\n{content}") elif role == "assistant": prompt_parts.append(f"model\n{content}") # Add the start for model response prompt_parts.append("model\n") return "\n".join(prompt_parts) def generate_response(messages: List[ChatMessage], max_tokens: int = 256, temperature: float = 1.0, top_p: float = 0.95) -> str: """Generate response using GGUF model via transformers pipeline.""" if text_pipeline is None: return "๐Ÿค– Demo mode: GGUF model not loaded. This would be a real response from the Gemma 3n GGUF model." try: # Convert messages to prompt prompt = convert_messages_to_prompt(messages) # Limit max_tokens for memory efficiency max_tokens = min(max_tokens, 512) # Generate response result = text_pipeline( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, return_full_text=False, pad_token_id=tokenizer.eos_token_id, ) # Extract generated text if result and len(result) > 0: response_text = result[0]['generated_text'].strip() # Clean up any unwanted tokens if "" in response_text: response_text = response_text.split("")[0].strip() return response_text else: return "I apologize, but I'm having trouble generating a response right now." except Exception as e: logger.error(f"GGUF generation failed: {e}") return "I apologize, but I'm having trouble generating a response right now. Please try again." @app.get("/", response_class=JSONResponse) async def root() -> Dict[str, Any]: """Root endpoint with service information""" return { "service": "GGUF Backend Service", "version": "1.0.0", "model": current_model, "gguf_file": gguf_filename, "backend": "transformers-native-gguf", "quantization": "Q4_K_M", "endpoints": { "health": "/health", "chat": "/v1/chat/completions", "docs": "/docs" } } @app.get("/health", response_model=HealthResponse) async def health_check(): """Health check endpoint""" status = "healthy" if text_pipeline is not None else "demo_mode" return HealthResponse( status=status, model=current_model, version="1.0.0", backend="transformers-native-gguf", quantization="Q4_K_M" ) @app.post("/v1/chat/completions", response_model=ChatCompletionResponse) async def create_chat_completion(request: ChatCompletionRequest) -> ChatCompletionResponse: """Create a chat completion (OpenAI-compatible) using GGUF model""" try: # Generate response response_text = generate_response( messages=request.messages, max_tokens=request.max_tokens or 256, temperature=request.temperature or 1.0, top_p=request.top_p or 0.95 ) # Create response message response_message = ChatMessage(role="assistant", content=response_text) # Create choice choice = ChatCompletionChoice( index=0, message=response_message, finish_reason="stop" ) # Create completion response completion = ChatCompletionResponse( id=f"chatcmpl-{uuid.uuid4().hex[:8]}", object="chat.completion", created=int(time.time()), model=request.model, choices=[choice] ) return completion except Exception as e: logger.error(f"Chat completion failed: {e}") raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)