Spaces:
Running
Running
File size: 25,412 Bytes
9d7abc9 f974a84 0004d04 f974a84 4facc83 0004d04 f974a84 5a4c20a 9d7abc9 5a4c20a 0004d04 5a4c20a f974a84 20f3fd0 f974a84 0004d04 7964b25 2c89e89 0004d04 7964b25 f974a84 2c89e89 0004d04 7964b25 2c89e89 20f3fd0 0004d04 7964b25 20f3fd0 0004d04 7964b25 0004d04 2c89e89 0004d04 20f3fd0 0004d04 20f3fd0 0004d04 2c89e89 0004d04 7964b25 0004d04 7964b25 0004d04 7964b25 0004d04 4facc83 0004d04 7964b25 0004d04 2c89e89 7964b25 0004d04 2c89e89 0004d04 4facc83 7964b25 0004d04 7964b25 0004d04 4facc83 0004d04 7964b25 4facc83 0004d04 7964b25 0004d04 4facc83 0004d04 4facc83 0004d04 4facc83 0004d04 7964b25 0004d04 20f3fd0 0004d04 20f3fd0 0004d04 20f3fd0 0004d04 7964b25 0004d04 7964b25 0004d04 7964b25 0004d04 7964b25 0004d04 7964b25 0004d04 7964b25 0004d04 20f3fd0 0004d04 20f3fd0 0004d04 2c89e89 7964b25 0004d04 2c89e89 0004d04 4facc83 7964b25 20f3fd0 0004d04 7964b25 0004d04 20f3fd0 0004d04 7964b25 0004d04 20f3fd0 0004d04 20f3fd0 0004d04 7964b25 0004d04 20f3fd0 0004d04 20f3fd0 0004d04 2c89e89 0004d04 2c89e89 0004d04 2c89e89 0004d04 2c89e89 0004d04 4facc83 2c89e89 f974a84 7964b25 0004d04 20f3fd0 7964b25 0004d04 20f3fd0 0004d04 20f3fd0 f974a84 2c89e89 f974a84 9d7abc9 5a4c20a 9d7abc9 fbecdef 7964b25 0004d04 fbecdef 5a4c20a fbecdef 5a4c20a 2c89e89 5a4c20a 20f3fd0 5a4c20a 7964b25 5a4c20a 20f3fd0 5a4c20a fbecdef 20f3fd0 f974a84 0004d04 20f3fd0 5a4c20a f974a84 9d7abc9 fbecdef 9d7abc9 fbecdef 9d7abc9 0004d04 20f3fd0 0004d04 20f3fd0 0004d04 20f3fd0 ba69aa1 0004d04 ba69aa1 0004d04 ba69aa1 0004d04 ba69aa1 0004d04 ba69aa1 20f3fd0 ba69aa1 0004d04 ba69aa1 0004d04 ba69aa1 20f3fd0 0004d04 20f3fd0 0004d04 20f3fd0 4facc83 0004d04 4facc83 0004d04 ba69aa1 4facc83 20f3fd0 4facc83 20f3fd0 7964b25 20f3fd0 7964b25 20f3fd0 0004d04 20f3fd0 0004d04 4facc83 0004d04 4facc83 0004d04 20f3fd0 0004d04 4facc83 20f3fd0 0004d04 20f3fd0 ba69aa1 7964b25 0004d04 ba69aa1 0004d04 ba69aa1 0004d04 ba69aa1 0004d04 ba69aa1 0004d04 ba69aa1 0004d04 ba69aa1 20f3fd0 5a4c20a f974a84 0004d04 9d7abc9 20f3fd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
import os
import gradio as gr
import random
import re
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import wordnet
from textstat import flesch_reading_ease, flesch_kincaid_grade
import string
from collections import defaultdict
# Setup NLTK download path for Hugging Face Spaces
os.environ['NLTK_DATA'] = '/tmp/nltk_data'
def download_nltk_data():
"""Download required NLTK data with proper error handling"""
try:
os.makedirs('/tmp/nltk_data', exist_ok=True)
nltk.data.path.append('/tmp/nltk_data')
required_data = ['punkt', 'punkt_tab', 'averaged_perceptron_tagger',
'stopwords', 'wordnet', 'omw-1.4']
for data in required_data:
try:
nltk.download(data, download_dir='/tmp/nltk_data', quiet=True)
print(f"Successfully downloaded {data}")
except Exception as e:
print(f"Failed to download {data}: {e}")
print("NLTK data download completed")
except Exception as e:
print(f"NLTK setup error: {e}")
download_nltk_data()
class AdvancedAIHumanizer:
def __init__(self):
self.setup_humanization_patterns()
self.load_synonym_database()
def setup_humanization_patterns(self):
"""Setup sophisticated humanization patterns that preserve meaning"""
# AI-flagged formal terms with contextually appropriate replacements
self.formal_replacements = {
r'\bdelve into\b': ["explore", "examine", "investigate", "analyze", "look into"],
r'\bembark on\b': ["begin", "start", "initiate", "commence", "launch"],
r'\ba testament to\b': ["evidence of", "proof of", "demonstrates", "shows", "indicates"],
r'\blandscape of\b': ["context of", "environment of", "field of", "domain of", "realm of"],
r'\bnavigating\b': ["managing", "addressing", "handling", "working through", "dealing with"],
r'\bmeticulous\b': ["careful", "thorough", "detailed", "precise", "systematic"],
r'\bintricate\b': ["complex", "detailed", "sophisticated", "elaborate", "nuanced"],
r'\bmyriad\b': ["numerous", "many", "various", "multiple", "countless"],
r'\bplethora\b': ["abundance", "variety", "range", "collection", "wealth"],
r'\bparadigm\b': ["model", "framework", "approach", "system", "method"],
r'\bsynergy\b': ["collaboration", "cooperation", "coordination", "integration", "teamwork"],
r'\bleverage\b': ["utilize", "employ", "use", "apply", "harness"],
r'\bfacilitate\b': ["enable", "support", "assist", "help", "promote"],
r'\boptimize\b': ["improve", "enhance", "refine", "perfect", "maximize"],
r'\bstreamline\b': ["simplify", "improve", "refine", "enhance", "optimize"],
r'\brobust\b': ["strong", "reliable", "effective", "solid", "durable"],
r'\bseamless\b': ["smooth", "integrated", "unified", "continuous", "fluid"],
r'\binnovative\b': ["creative", "original", "novel", "advanced", "groundbreaking"],
r'\bcutting-edge\b': ["advanced", "latest", "modern", "current", "state-of-the-art"],
r'\bstate-of-the-art\b': ["advanced", "modern", "sophisticated", "current", "latest"]
}
# Transition phrase variations
self.transition_replacements = {
r'\bfurthermore\b': ["additionally", "moreover", "in addition", "also", "besides"],
r'\bmoreover\b': ["furthermore", "additionally", "also", "in addition", "what's more"],
r'\bhowever\b': ["nevertheless", "yet", "still", "although", "but"],
r'\bnevertheless\b': ["however", "yet", "still", "nonetheless", "even so"],
r'\btherefore\b': ["consequently", "thus", "as a result", "hence", "so"],
r'\bconsequently\b': ["therefore", "thus", "as a result", "accordingly", "hence"],
r'\bin conclusion\b': ["finally", "ultimately", "in summary", "to summarize", "overall"],
r'\bto summarize\b': ["in conclusion", "finally", "in summary", "overall", "in essence"],
r'\bin summary\b': ["to conclude", "overall", "finally", "in essence", "ultimately"]
}
# Sentence structure patterns for variation
self.sentence_starters = [
"Additionally,", "Furthermore,", "In particular,", "Notably,",
"Importantly,", "Significantly,", "Moreover,", "Consequently,",
"Interestingly,", "Specifically,", "Essentially,", "Primarily,"
]
# Professional contractions (limited and contextual)
self.professional_contractions = {
r'\bit is\b': "it's",
r'\bthere is\b': "there's",
r'\bthat is\b': "that's",
r'\bcannot\b': "can't",
r'\bdo not\b': "don't",
r'\bdoes not\b': "doesn't",
r'\bwill not\b': "won't",
r'\bwould not\b': "wouldn't",
r'\bshould not\b': "shouldn't",
r'\bcould not\b': "couldn't"
}
def load_synonym_database(self):
"""Load and prepare synonym database using WordNet"""
try:
# Test WordNet availability
wordnet.synsets('test')
self.wordnet_available = True
print("WordNet loaded successfully")
except:
self.wordnet_available = False
print("WordNet not available, using limited synonym replacement")
def get_contextual_synonym(self, word, pos_tag=None):
"""Get contextually appropriate synonym using WordNet"""
if not self.wordnet_available:
return word
try:
# Get synsets for the word
synsets = wordnet.synsets(word.lower())
if not synsets:
return word
# Get synonyms from the first synset
synonyms = []
for synset in synsets[:2]: # Check first 2 synsets
for lemma in synset.lemmas():
synonym = lemma.name().replace('_', ' ')
if synonym != word.lower() and len(synonym) > 2:
synonyms.append(synonym)
if synonyms:
# Return a synonym that's similar in length to avoid dramatic changes
suitable_synonyms = [s for s in synonyms if abs(len(s) - len(word)) <= 3]
if suitable_synonyms:
return random.choice(suitable_synonyms)
else:
return random.choice(synonyms)
return word
except:
return word
def preserve_meaning_replacement(self, text, intensity_level=1):
"""Replace AI-flagged terms while preserving exact meaning"""
result = text
# Determine replacement probability based on intensity
replacement_probability = {
1: 0.3, # Light
2: 0.5, # Standard
3: 0.7 # Heavy
}
prob = replacement_probability.get(intensity_level, 0.5)
# Apply formal term replacements
for pattern, replacements in self.formal_replacements.items():
if re.search(pattern, result, re.IGNORECASE) and random.random() < prob:
replacement = random.choice(replacements)
result = re.sub(pattern, replacement, result, flags=re.IGNORECASE)
# Apply transition phrase replacements
for pattern, replacements in self.transition_replacements.items():
if re.search(pattern, result, re.IGNORECASE) and random.random() < prob:
replacement = random.choice(replacements)
result = re.sub(pattern, replacement, result, flags=re.IGNORECASE)
return result
def vary_sentence_structure(self, text, intensity_level=1):
"""Vary sentence structures while maintaining meaning"""
sentences = sent_tokenize(text)
varied_sentences = []
# Determine variation probability based on intensity
variation_probability = {
1: 0.1, # Light
2: 0.2, # Standard
3: 0.3 # Heavy
}
prob = variation_probability.get(intensity_level, 0.2)
for i, sentence in enumerate(sentences):
# Occasionally add transitional phrases at the beginning
if i > 0 and len(sentence.split()) > 6 and random.random() < prob:
starter = random.choice(self.sentence_starters)
sentence = sentence[0].lower() + sentence[1:]
sentence = f"{starter} {sentence}"
# Convert some passive to active voice and vice versa
if random.random() < prob:
sentence = self.vary_voice(sentence)
# Restructure complex sentences occasionally
if len(sentence.split()) > 15 and random.random() < prob:
sentence = self.restructure_complex_sentence(sentence)
varied_sentences.append(sentence)
return " ".join(varied_sentences)
def vary_voice(self, sentence):
"""Convert between active and passive voice occasionally"""
# Simple passive to active conversion patterns
passive_patterns = [
(r'(\w+) (?:is|are|was|were) (\w+ed|known|seen|used|made) by (.+)',
r'\3 \2 \1'),
(r'(\w+) (?:is|are|was|were) (\w+ed|known|seen|used|made)',
r'Someone \2 \1')
]
for pattern, replacement in passive_patterns:
if re.search(pattern, sentence) and random.random() < 0.3:
sentence = re.sub(pattern, replacement, sentence)
break
return sentence
def restructure_complex_sentence(self, sentence):
"""Restructure overly complex sentences"""
# Split long sentences at natural break points
if ',' in sentence and len(sentence.split()) > 15:
parts = sentence.split(',', 1)
if len(parts) == 2:
first_part = parts[0].strip()
second_part = parts[1].strip()
# Rejoin with different structure
connectors = ["Additionally", "Furthermore", "Moreover", "Also"]
connector = random.choice(connectors)
return f"{first_part}. {connector}, {second_part}"
return sentence
def apply_subtle_contractions(self, text, intensity_level=1):
"""Apply professional contractions sparingly"""
# Determine contraction probability based on intensity
contraction_probability = {
1: 0.2, # Light
2: 0.3, # Standard
3: 0.4 # Heavy
}
prob = contraction_probability.get(intensity_level, 0.3)
for pattern, contraction in self.professional_contractions.items():
if re.search(pattern, text, re.IGNORECASE) and random.random() < prob:
text = re.sub(pattern, contraction, text, flags=re.IGNORECASE)
return text
def enhance_vocabulary_diversity(self, text, intensity_level=1):
"""Enhance vocabulary diversity using contextual synonyms"""
words = word_tokenize(text)
enhanced_words = []
word_frequency = defaultdict(int)
# Determine synonym probability based on intensity
synonym_probability = {
1: 0.1, # Light
2: 0.2, # Standard
3: 0.3 # Heavy
}
prob = synonym_probability.get(intensity_level, 0.2)
# Track word frequency to identify repetitive words
for word in words:
if word.isalpha() and len(word) > 4:
word_frequency[word.lower()] += 1
for word in words:
if (word.isalpha() and len(word) > 4 and
word_frequency[word.lower()] > 1 and
random.random() < prob):
synonym = self.get_contextual_synonym(word)
enhanced_words.append(synonym)
else:
enhanced_words.append(word)
return ' '.join(enhanced_words)
def add_natural_variation(self, text, intensity_level=1):
"""Add natural human-like variations"""
sentences = sent_tokenize(text)
varied_sentences = []
# Determine variation probability based on intensity
variation_probability = {
1: 0.05, # Light
2: 0.15, # Standard
3: 0.25 # Heavy
}
prob = variation_probability.get(intensity_level, 0.15)
for sentence in sentences:
# Occasionally vary sentence length and structure
if len(sentence.split()) > 20 and random.random() < prob:
# Split very long sentences
mid_point = len(sentence.split()) // 2
words = sentence.split()
# Find natural break point near middle
for i in range(mid_point - 2, mid_point + 3):
if i < len(words) and words[i] in [',', 'and', 'but', 'or', 'because']:
first_part = ' '.join(words[:i])
second_part = ' '.join(words[i+1:])
sentence = f"{first_part}. {second_part.capitalize()}"
break
# Add subtle emphasis occasionally
if random.random() < prob:
sentence = self.add_subtle_emphasis(sentence)
varied_sentences.append(sentence)
return " ".join(varied_sentences)
def add_subtle_emphasis(self, sentence):
"""Add very subtle emphasis that doesn't change meaning"""
emphasis_patterns = [
(r'\bvery important\b', "crucial"),
(r'\bvery significant\b', "highly significant"),
(r'\bvery effective\b', "highly effective"),
(r'\bvery useful\b', "particularly useful"),
(r'\bvery good\b', "excellent"),
(r'\bvery bad\b', "poor")
]
for pattern, replacement in emphasis_patterns:
if re.search(pattern, sentence, re.IGNORECASE):
sentence = re.sub(pattern, replacement, sentence, flags=re.IGNORECASE)
break
return sentence
def final_coherence_check(self, text):
"""Final check to ensure coherence and proper formatting"""
# Fix spacing issues
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\s+([,.!?;:])', r'\1', text)
text = re.sub(r'([,.!?;:])\s*([A-Z])', r'\1 \2', text)
# Ensure proper capitalization
sentences = sent_tokenize(text)
corrected_sentences = []
for sentence in sentences:
if sentence and sentence[0].islower():
sentence = sentence[0].upper() + sentence[1:]
corrected_sentences.append(sentence)
text = " ".join(corrected_sentences)
# Remove any double periods or spaces
text = re.sub(r'\.+', '.', text)
text = re.sub(r'\s+', ' ', text)
return text.strip()
def advanced_humanize(self, text, intensity_level=1):
"""Apply sophisticated humanization that preserves meaning"""
current_text = text
print(f"Processing with intensity level: {intensity_level}")
# Apply humanization techniques with intensity-based parameters
current_text = self.preserve_meaning_replacement(current_text, intensity_level)
current_text = self.vary_sentence_structure(current_text, intensity_level)
current_text = self.enhance_vocabulary_diversity(current_text, intensity_level)
current_text = self.apply_subtle_contractions(current_text, intensity_level)
current_text = self.add_natural_variation(current_text, intensity_level)
# Final coherence and cleanup
current_text = self.final_coherence_check(current_text)
return current_text
def get_readability_score(self, text):
"""Calculate readability score"""
try:
score = flesch_reading_ease(text)
grade = flesch_kincaid_grade(text)
level = ("Very Easy" if score >= 90 else "Easy" if score >= 80 else
"Fairly Easy" if score >= 70 else "Standard" if score >= 60 else
"Fairly Difficult" if score >= 50 else "Difficult" if score >= 30 else
"Very Difficult")
return f"Flesch Score: {score:.1f} ({level})\nGrade Level: {grade:.1f}"
except Exception as e:
return f"Could not calculate readability: {str(e)}"
def humanize_text(self, text, intensity="standard"):
"""Main humanization method with meaning preservation"""
if not text or not text.strip():
return "Please provide text to humanize."
try:
text = text.strip()
# Test NLTK functionality
try:
test_tokens = sent_tokenize("This is a test sentence.")
if not test_tokens:
raise Exception("NLTK tokenization failed")
except Exception as nltk_error:
return f"NLTK Error: {str(nltk_error)}. Please try again."
# Map intensity to numeric levels
intensity_mapping = {
"light": 1,
"standard": 2,
"heavy": 3
}
intensity_level = intensity_mapping.get(intensity, 2)
print(f"Using intensity: {intensity} (level {intensity_level})")
# Apply humanization
result = self.advanced_humanize(text, intensity_level)
return result
except Exception as e:
return f"Error processing text: {str(e)}"
def create_interface():
"""Create the professional Gradio interface"""
humanizer = AdvancedAIHumanizer()
def process_text(input_text, intensity):
if not input_text:
return "Please enter some text to humanize.", "No text provided."
try:
result = humanizer.humanize_text(input_text, intensity)
score = humanizer.get_readability_score(result)
return result, score
except Exception as e:
return f"Error: {str(e)}", "Processing error"
# Professional CSS styling
professional_css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.main-header {
text-align: center;
color: #2c3e50;
font-size: 2.2em;
font-weight: 600;
margin-bottom: 20px;
padding: 20px;
border-bottom: 2px solid #3498db;
}
.feature-box {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
border-radius: 8px;
padding: 20px;
margin: 15px 0;
border-left: 4px solid #3498db;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.info-box {
background: #e8f5e8;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
border-left: 4px solid #27ae60;
}
"""
with gr.Blocks(
title="Professional AI Humanizer",
theme=gr.themes.Soft(),
css=professional_css
) as interface:
gr.HTML("""
<div class="main-header">
π― Professional AI Content Humanizer
</div>
<div style="text-align: center; margin-bottom: 30px;">
<h3>Meaning-Preserving AI Detection Bypass</h3>
<p style="font-size: 1.1em; color: #7f8c8d;">
Advanced humanization while maintaining professional tone and original meaning
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
input_text = gr.Textbox(
label="π Original Content",
lines=12,
placeholder="Enter your AI-generated content here...\n\nThis tool will humanize it while preserving the original meaning and maintaining a professional tone.",
info="π‘ Best results with content 100+ words",
show_copy_button=True
)
intensity = gr.Radio(
choices=[
("Light Processing (30% changes)", "light"),
("Standard Processing (50% changes)", "standard"),
("Heavy Processing (70% changes)", "heavy")
],
value="standard",
label="π§ Processing Intensity",
info="Choose how extensively to humanize the content"
)
btn = gr.Button(
"π Humanize Content",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
output_text = gr.Textbox(
label="β
Humanized Content",
lines=12,
show_copy_button=True,
info="Processed content ready for use"
)
readability = gr.Textbox(
label="π Content Analysis",
lines=3,
info="Readability metrics"
)
gr.HTML("""
<div class="feature-box">
<h3>π― Processing Intensity Levels:</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 15px; margin: 15px 0;">
<div class="info-box">
<strong>π’ Light Processing (30%):</strong><br>
β’ Minimal word replacements<br>
β’ Basic sentence variation<br>
β’ Subtle changes only<br>
β’ Best for: Already human-like content
</div>
<div class="info-box">
<strong>π‘ Standard Processing (50%):</strong><br>
β’ Moderate humanization<br>
β’ Balanced approach<br>
β’ Professional tone maintained<br>
β’ Best for: Most AI-generated content
</div>
<div class="info-box">
<strong>π΄ Heavy Processing (70%):</strong><br>
β’ Extensive modifications<br>
β’ Maximum variation<br>
β’ Strong AI detection bypass<br>
β’ Best for: Highly detectable AI text
</div>
</div>
</div>
""")
gr.HTML("""
<div class="feature-box">
<h3>π Advanced Humanization Features:</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 15px; margin: 15px 0;">
<div class="info-box">
<strong>π Meaning Preservation:</strong><br>
Maintains exact original meaning and intent
</div>
<div class="info-box">
<strong>π Professional Tone:</strong><br>
Keeps appropriate formality level
</div>
<div class="info-box">
<strong>π Structure Variation:</strong><br>
Natural sentence pattern diversity
</div>
<div class="info-box">
<strong>π Smart Synonyms:</strong><br>
Context-aware vocabulary enhancement
</div>
<div class="info-box">
<strong>π Coherent Flow:</strong><br>
Maintains logical progression
</div>
<div class="info-box">
<strong>β‘ Detection Bypass:</strong><br>
Passes modern AI detection tools
</div>
</div>
</div>
""")
# Event handlers
btn.click(
fn=process_text,
inputs=[input_text, intensity],
outputs=[output_text, readability]
)
input_text.submit(
fn=process_text,
inputs=[input_text, intensity],
outputs=[output_text, readability]
)
return interface
if __name__ == "__main__":
print("π Starting Professional AI Humanizer...")
app = create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=False
)
|