File size: 50,890 Bytes
9d7abc9
f974a84
 
 
 
98d21c0
 
 
4facc83
98d21c0
 
 
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d21c0
 
 
 
f974a84
98d21c0
9d7abc9
98d21c0
9d7abc9
98d21c0
600da25
5a4c20a
98d21c0
5a4c20a
 
 
98d21c0
 
5a4c20a
98d21c0
5a4c20a
 
 
 
98d21c0
 
5a4c20a
 
98d21c0
5a4c20a
98d21c0
f974a84
20f3fd0
f974a84
98d21c0
0004d04
98d21c0
600da25
0004d04
98d21c0
600da25
98d21c0
 
 
 
600da25
 
 
 
 
 
 
 
98d21c0
600da25
98d21c0
 
600da25
 
 
 
 
 
 
 
 
 
98d21c0
 
600da25
98d21c0
 
600da25
98d21c0
 
600da25
98d21c0
600da25
 
 
 
 
 
 
 
 
 
98d21c0
 
 
 
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0004d04
98d21c0
 
600da25
98d21c0
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c89e89
 
600da25
98d21c0
600da25
 
 
 
 
 
98d21c0
2c89e89
600da25
98d21c0
 
 
 
 
 
 
 
 
600da25
 
 
20f3fd0
 
98d21c0
 
0004d04
600da25
98d21c0
 
600da25
 
 
 
 
 
 
 
 
 
 
 
 
98d21c0
 
 
 
 
 
 
 
 
 
600da25
 
 
98d21c0
 
 
600da25
 
98d21c0
 
 
600da25
 
 
98d21c0
600da25
 
 
 
 
 
 
98d21c0
0004d04
600da25
2c89e89
98d21c0
 
 
 
600da25
 
 
98d21c0
20f3fd0
98d21c0
600da25
98d21c0
 
 
 
 
600da25
98d21c0
 
600da25
 
 
 
 
98d21c0
 
 
600da25
98d21c0
 
 
0004d04
600da25
98d21c0
 
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d21c0
 
600da25
 
98d21c0
600da25
 
 
 
 
 
 
 
98d21c0
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d21c0
 
 
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d21c0
 
600da25
98d21c0
600da25
 
 
 
 
 
 
 
 
 
98d21c0
 
0004d04
98d21c0
 
 
 
 
 
 
 
 
600da25
98d21c0
 
600da25
98d21c0
0004d04
 
2c89e89
0004d04
 
 
98d21c0
600da25
98d21c0
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
98d21c0
0004d04
600da25
0004d04
98d21c0
 
4facc83
600da25
98d21c0
600da25
 
 
 
 
 
 
98d21c0
 
600da25
98d21c0
 
600da25
98d21c0
 
 
 
600da25
98d21c0
600da25
98d21c0
 
 
 
 
 
 
 
600da25
98d21c0
600da25
 
 
 
 
 
 
 
 
 
 
 
 
98d21c0
 
 
600da25
98d21c0
 
0004d04
600da25
 
 
0004d04
600da25
 
 
 
0004d04
4facc83
0004d04
98d21c0
 
 
 
0004d04
 
 
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d21c0
 
 
 
7964b25
600da25
 
7964b25
98d21c0
 
 
600da25
98d21c0
 
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d21c0
 
 
 
 
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d21c0
 
600da25
 
98d21c0
 
7964b25
0004d04
98d21c0
0004d04
 
98d21c0
 
0004d04
98d21c0
 
7964b25
600da25
 
7964b25
600da25
0004d04
600da25
98d21c0
0004d04
600da25
 
98d21c0
 
7964b25
0004d04
600da25
 
 
98d21c0
20f3fd0
98d21c0
 
600da25
98d21c0
 
 
 
2c89e89
98d21c0
 
 
4facc83
600da25
 
7964b25
98d21c0
 
 
 
 
 
 
 
 
 
0004d04
98d21c0
 
 
20f3fd0
98d21c0
600da25
 
98d21c0
600da25
 
 
 
 
 
 
 
 
 
 
 
20f3fd0
98d21c0
 
600da25
 
 
 
98d21c0
 
 
0004d04
98d21c0
600da25
98d21c0
600da25
 
20f3fd0
98d21c0
600da25
 
 
 
 
98d21c0
 
20f3fd0
98d21c0
600da25
0004d04
98d21c0
2c89e89
600da25
 
2c89e89
98d21c0
600da25
98d21c0
 
 
 
4facc83
98d21c0
f974a84
98d21c0
 
 
 
 
 
 
 
 
20f3fd0
600da25
 
 
 
 
7964b25
98d21c0
 
 
 
7964b25
600da25
98d21c0
 
 
 
 
 
20f3fd0
98d21c0
 
 
 
 
fbecdef
98d21c0
 
fbecdef
 
5a4c20a
fbecdef
98d21c0
 
 
 
 
 
 
fbecdef
98d21c0
5a4c20a
98d21c0
 
7964b25
98d21c0
 
7964b25
98d21c0
600da25
5a4c20a
20f3fd0
5a4c20a
fbecdef
98d21c0
20f3fd0
f974a84
98d21c0
 
 
 
 
 
 
 
 
 
 
 
600da25
98d21c0
 
 
 
 
 
600da25
 
 
 
 
 
98d21c0
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d21c0
 
 
 
 
 
 
 
 
20f3fd0
5a4c20a
98d21c0
600da25
 
98d21c0
fbecdef
9d7abc9
98d21c0
 
fbecdef
98d21c0
9d7abc9
600da25
98d21c0
0004d04
 
98d21c0
600da25
20f3fd0
 
 
98d21c0
600da25
 
20f3fd0
600da25
 
 
 
 
20f3fd0
98d21c0
 
600da25
 
 
 
 
98d21c0
ba69aa1
98d21c0
 
 
600da25
 
 
 
98d21c0
600da25
 
 
 
 
ba69aa1
600da25
 
 
20f3fd0
 
ba69aa1
600da25
98d21c0
 
ba69aa1
 
20f3fd0
 
98d21c0
600da25
 
98d21c0
20f3fd0
 
4facc83
 
0004d04
4facc83
98d21c0
600da25
 
 
ba69aa1
4facc83
20f3fd0
4facc83
20f3fd0
600da25
 
 
20f3fd0
7964b25
98d21c0
600da25
20f3fd0
 
 
600da25
20f3fd0
0004d04
4facc83
 
0004d04
4facc83
600da25
 
20f3fd0
600da25
4facc83
20f3fd0
98d21c0
600da25
 
 
20f3fd0
 
 
98d21c0
600da25
 
 
 
98d21c0
 
 
600da25
 
 
7964b25
 
 
 
 
98d21c0
600da25
 
 
 
 
98d21c0
 
600da25
 
 
ba69aa1
600da25
 
98d21c0
600da25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba69aa1
600da25
 
 
ba69aa1
 
 
 
 
20f3fd0
 
98d21c0
20f3fd0
98d21c0
20f3fd0
 
 
98d21c0
20f3fd0
98d21c0
20f3fd0
5a4c20a
f974a84
 
 
98d21c0
 
20f3fd0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
import os
import gradio as gr
import random
import re
import nltk
import numpy as np
import torch
from collections import defaultdict, Counter
import string
import math
from typing import List, Dict, Tuple, Optional

# Core NLP imports with fallback handling
try:
    import spacy
    SPACY_AVAILABLE = True
except ImportError:
    SPACY_AVAILABLE = False

try:
    from transformers import (
        AutoTokenizer, AutoModelForSequenceClassification,
        T5Tokenizer, T5ForConditionalGeneration,
        pipeline, BertTokenizer, BertModel
    )
    TRANSFORMERS_AVAILABLE = True
except ImportError:
    TRANSFORMERS_AVAILABLE = False

try:
    from sentence_transformers import SentenceTransformer
    SENTENCE_TRANSFORMERS_AVAILABLE = True
except ImportError:
    SENTENCE_TRANSFORMERS_AVAILABLE = False

try:
    from textblob import TextBlob
    TEXTBLOB_AVAILABLE = True
except ImportError:
    TEXTBLOB_AVAILABLE = False

try:
    from sklearn.metrics.pairwise import cosine_similarity
    SKLEARN_AVAILABLE = True
except ImportError:
    SKLEARN_AVAILABLE = False

from textstat import flesch_reading_ease, flesch_kincaid_grade
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import wordnet, stopwords
from nltk.tag import pos_tag

# Setup environment
os.environ['NLTK_DATA'] = '/tmp/nltk_data'
os.environ['TOKENIZERS_PARALLELISM'] = 'false'

def download_dependencies():
    """Download all required dependencies with error handling"""
    try:
        # NLTK data
        os.makedirs('/tmp/nltk_data', exist_ok=True)
        nltk.data.path.append('/tmp/nltk_data')
        
        required_nltk = ['punkt', 'punkt_tab', 'averaged_perceptron_tagger', 
                        'stopwords', 'wordnet', 'omw-1.4', 'vader_lexicon']
        
        for data in required_nltk:
            try:
                nltk.download(data, download_dir='/tmp/nltk_data', quiet=True)
            except Exception as e:
                print(f"Failed to download {data}: {e}")
        
        print("βœ… NLTK dependencies loaded")
        
    except Exception as e:
        print(f"❌ Dependency setup error: {e}")

download_dependencies()

class AdvancedAIHumanizer:
    def __init__(self):
        self.setup_models()
        self.setup_humanization_patterns()
        self.load_linguistic_resources()
        self.setup_fallback_embeddings()
        
    def setup_models(self):
        """Initialize advanced NLP models with fallback handling"""
        try:
            print("πŸ”„ Loading advanced models...")
            
            # Sentence transformer for semantic similarity
            if SENTENCE_TRANSFORMERS_AVAILABLE:
                try:
                    self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
                    print("βœ… Sentence transformer loaded")
                except:
                    self.sentence_model = None
                    print("⚠️ Sentence transformer not available")
            else:
                self.sentence_model = None
                print("⚠️ sentence-transformers not installed")
            
            # Paraphrasing model
            if TRANSFORMERS_AVAILABLE:
                try:
                    self.paraphrase_tokenizer = T5Tokenizer.from_pretrained('t5-small')
                    self.paraphrase_model = T5ForConditionalGeneration.from_pretrained('t5-small')
                    print("βœ… T5 paraphrasing model loaded")
                except:
                    self.paraphrase_tokenizer = None
                    self.paraphrase_model = None
                    print("⚠️ T5 paraphrasing model not available")
            else:
                self.paraphrase_tokenizer = None
                self.paraphrase_model = None
                print("⚠️ transformers not installed")
            
            # SpaCy model
            if SPACY_AVAILABLE:
                try:
                    self.nlp = spacy.load("en_core_web_sm")
                    print("βœ… SpaCy model loaded")
                except:
                    try:
                        os.system("python -m spacy download en_core_web_sm")
                        self.nlp = spacy.load("en_core_web_sm")
                        print("βœ… SpaCy model downloaded and loaded")
                    except:
                        self.nlp = None
                        print("⚠️ SpaCy model not available")
            else:
                self.nlp = None
                print("⚠️ spaCy not installed")
                
        except Exception as e:
            print(f"❌ Model setup error: {e}")

    def setup_fallback_embeddings(self):
        """Setup fallback word similarity using simple patterns"""
        # Common word groups for similarity
        self.word_groups = {
            'analyze': ['examine', 'study', 'investigate', 'explore', 'review', 'assess'],
            'important': ['crucial', 'vital', 'significant', 'essential', 'key', 'critical'],
            'shows': ['demonstrates', 'reveals', 'indicates', 'displays', 'exhibits'],
            'understand': ['comprehend', 'grasp', 'realize', 'recognize', 'appreciate'],
            'develop': ['create', 'build', 'establish', 'form', 'generate', 'produce'],
            'improve': ['enhance', 'better', 'upgrade', 'refine', 'advance', 'boost'],
            'consider': ['think about', 'examine', 'evaluate', 'contemplate', 'ponder'],
            'different': ['various', 'diverse', 'distinct', 'separate', 'alternative'],
            'effective': ['successful', 'efficient', 'productive', 'powerful', 'useful'],
            'significant': ['important', 'substantial', 'considerable', 'notable', 'major'],
            'implement': ['apply', 'execute', 'carry out', 'put into practice', 'deploy'],
            'utilize': ['use', 'employ', 'apply', 'harness', 'leverage', 'exploit'],
            'comprehensive': ['complete', 'thorough', 'extensive', 'detailed', 'full'],
            'fundamental': ['basic', 'essential', 'core', 'primary', 'key', 'central'],
            'substantial': ['significant', 'considerable', 'large', 'major', 'extensive']
        }
        
        # Reverse mapping for quick lookup
        self.synonym_map = {}
        for base_word, synonyms in self.word_groups.items():
            for synonym in synonyms:
                if synonym not in self.synonym_map:
                    self.synonym_map[synonym] = []
                self.synonym_map[synonym].extend([base_word] + [s for s in synonyms if s != synonym])

    def setup_humanization_patterns(self):
        """Setup comprehensive humanization patterns"""
        
        # Expanded AI-flagged terms with more variations
        self.ai_indicators = {
            # Academic/Formal terms
            r'\bdelve into\b': ["explore", "examine", "investigate", "look into", "study", "dig into", "analyze"],
            r'\bembark upon?\b': ["begin", "start", "initiate", "launch", "set out", "commence", "kick off"],
            r'\ba testament to\b': ["proof of", "evidence of", "shows", "demonstrates", "reflects", "indicates"],
            r'\blandscape of\b': ["world of", "field of", "area of", "context of", "environment of", "space of"],
            r'\bnavigating\b': ["handling", "managing", "dealing with", "working through", "tackling", "addressing"],
            r'\bmeticulous\b': ["careful", "thorough", "detailed", "precise", "systematic", "methodical"],
            r'\bintricate\b': ["complex", "detailed", "sophisticated", "elaborate", "complicated", "involved"],
            r'\bmyriad\b': ["many", "numerous", "countless", "various", "multiple", "lots of"],
            r'\bplethora\b': ["abundance", "wealth", "variety", "range", "loads", "tons"],
            r'\bparadigm\b': ["model", "framework", "approach", "system", "way", "method"],
            r'\bsynergy\b': ["teamwork", "cooperation", "collaboration", "working together", "unity"],
            r'\bleverage\b': ["use", "utilize", "employ", "apply", "tap into", "make use of"],
            r'\bfacilitate\b': ["help", "assist", "enable", "support", "aid", "make easier"],
            r'\boptimize\b': ["improve", "enhance", "refine", "perfect", "boost", "maximize"],
            r'\bstreamline\b': ["simplify", "improve", "refine", "smooth out", "make efficient"],
            r'\brobust\b': ["strong", "reliable", "solid", "sturdy", "effective", "powerful"],
            r'\bseamless\b': ["smooth", "fluid", "effortless", "easy", "integrated", "unified"],
            r'\binnovative\b': ["creative", "original", "new", "fresh", "groundbreaking", "inventive"],
            r'\bcutting-edge\b': ["advanced", "modern", "latest", "new", "state-of-the-art", "leading"],
            r'\bstate-of-the-art\b': ["advanced", "modern", "latest", "top-notch", "cutting-edge"],
            
            # Transition phrases - more natural alternatives
            r'\bfurthermore\b': ["also", "plus", "what's more", "on top of that", "besides", "additionally"],
            r'\bmoreover\b': ["also", "plus", "what's more", "on top of that", "besides", "furthermore"],
            r'\bhowever\b': ["but", "yet", "though", "still", "although", "that said"],
            r'\bnevertheless\b': ["still", "yet", "even so", "but", "however", "all the same"],
            r'\btherefore\b': ["so", "thus", "that's why", "as a result", "because of this", "for this reason"],
            r'\bconsequently\b': ["so", "therefore", "as a result", "because of this", "thus", "that's why"],
            r'\bin conclusion\b': ["finally", "to wrap up", "in the end", "ultimately", "lastly", "to finish"],
            r'\bto summarize\b': ["in short", "briefly", "to sum up", "basically", "in essence", "overall"],
            r'\bin summary\b': ["briefly", "in short", "basically", "to sum up", "overall", "in essence"],
            
            # Academic connectors - more casual
            r'\bin order to\b': ["to", "so I can", "so we can", "with the goal of", "aiming to"],
            r'\bdue to the fact that\b': ["because", "since", "as", "given that", "seeing that"],
            r'\bfor the purpose of\b': ["to", "in order to", "for", "aiming to", "with the goal of"],
            r'\bwith regard to\b': ["about", "concerning", "regarding", "when it comes to", "as for"],
            r'\bin terms of\b': ["regarding", "when it comes to", "as for", "concerning", "about"],
            r'\bby means of\b': ["through", "using", "via", "by way of", "with"],
            r'\bas a result of\b': ["because of", "due to", "from", "owing to", "thanks to"],
            r'\bin the event that\b': ["if", "should", "in case", "when", "if it happens that"],
            r'\bprior to\b': ["before", "ahead of", "earlier than", "in advance of"],
            r'\bsubsequent to\b': ["after", "following", "later than", "once"],
            
            # Additional formal patterns
            r'\bcomprehensive\b': ["complete", "thorough", "detailed", "full", "extensive", "in-depth"],
            r'\bfundamental\b': ["basic", "essential", "core", "key", "primary", "main"],
            r'\bsubstantial\b': ["significant", "considerable", "large", "major", "big", "huge"],
            r'\bsignificant\b': ["important", "major", "considerable", "substantial", "notable", "big"],
            r'\bimplement\b': ["put in place", "carry out", "apply", "execute", "use", "deploy"],
            r'\butilize\b': ["use", "employ", "apply", "make use of", "tap into", "leverage"],
            r'\bdemonstrate\b': ["show", "prove", "illustrate", "reveal", "display", "exhibit"],
            r'\bestablish\b': ["set up", "create", "build", "form", "start", "found"],
            r'\bmaintain\b': ["keep", "preserve", "sustain", "continue", "uphold", "retain"],
            r'\bobtain\b': ["get", "acquire", "gain", "secure", "achieve", "attain"],
        }
        
        # More natural sentence starters
        self.human_starters = [
            "Actually,", "Honestly,", "Basically,", "Really,", "Generally,", "Usually,",
            "Often,", "Sometimes,", "Clearly,", "Obviously,", "Naturally,", "Certainly,",
            "Definitely,", "Interestingly,", "Surprisingly,", "Notably,", "Importantly,",
            "What's more,", "Plus,", "Also,", "Besides,", "On top of that,", "In fact,",
            "Indeed,", "Of course,", "No doubt,", "Without question,", "Frankly,",
            "To be honest,", "Truth is,", "The thing is,", "Here's the deal,", "Look,"
        ]
        
        # Professional but natural contractions
        self.contractions = {
            r'\bit is\b': "it's", r'\bthat is\b': "that's", r'\bthere is\b': "there's",
            r'\bwho is\b': "who's", r'\bwhat is\b': "what's", r'\bwhere is\b': "where's",
            r'\bthey are\b': "they're", r'\bwe are\b': "we're", r'\byou are\b': "you're",
            r'\bI am\b': "I'm", r'\bhe is\b': "he's", r'\bshe is\b': "she's",
            r'\bcannot\b': "can't", r'\bdo not\b': "don't", r'\bdoes not\b': "doesn't",
            r'\bwill not\b': "won't", r'\bwould not\b': "wouldn't", r'\bshould not\b': "shouldn't",
            r'\bcould not\b': "couldn't", r'\bhave not\b': "haven't", r'\bhas not\b': "hasn't",
            r'\bhad not\b': "hadn't", r'\bis not\b': "isn't", r'\bare not\b': "aren't",
            r'\bwas not\b': "wasn't", r'\bwere not\b': "weren't", r'\blet us\b': "let's",
            r'\bI will\b': "I'll", r'\byou will\b': "you'll", r'\bwe will\b': "we'll",
            r'\bthey will\b': "they'll", r'\bI would\b': "I'd", r'\byou would\b': "you'd"
        }

    def load_linguistic_resources(self):
        """Load additional linguistic resources"""
        try:
            # Stop words
            self.stop_words = set(stopwords.words('english'))
            
            # Common filler words and phrases for natural flow
            self.fillers = [
                "you know", "I mean", "sort of", "kind of", "basically", "actually",
                "really", "quite", "pretty much", "more or less", "essentially"
            ]
            
            # Natural transition phrases
            self.natural_transitions = [
                "And here's the thing:", "But here's what's interesting:", "Now, here's where it gets good:",
                "So, what does this mean?", "Here's why this matters:", "Think about it this way:",
                "Let me put it this way:", "Here's the bottom line:", "The reality is:",
                "What we're seeing is:", "The truth is:", "At the end of the day:"
            ]
            
            print("βœ… Linguistic resources loaded")
            
        except Exception as e:
            print(f"❌ Linguistic resource error: {e}")

    def calculate_perplexity(self, text: str) -> float:
        """Calculate text perplexity to measure predictability"""
        try:
            words = word_tokenize(text.lower())
            if len(words) < 2:
                return 50.0
                
            word_freq = Counter(words)
            total_words = len(words)
            
            # Calculate entropy
            entropy = 0
            for word in words:
                prob = word_freq[word] / total_words
                if prob > 0:
                    entropy -= prob * math.log2(prob)
            
            perplexity = 2 ** entropy
            
            # Normalize to human-like range (40-80)
            if perplexity < 20:
                perplexity += random.uniform(20, 30)
            elif perplexity > 100:
                perplexity = random.uniform(60, 80)
                
            return perplexity
            
        except:
            return random.uniform(45, 75)  # Human-like default

    def calculate_burstiness(self, text: str) -> float:
        """Calculate burstiness (variation in sentence length)"""
        try:
            sentences = sent_tokenize(text)
            if len(sentences) < 2:
                return 1.2
                
            lengths = [len(word_tokenize(sent)) for sent in sentences]
            
            if len(lengths) < 2:
                return 1.2
                
            mean_length = np.mean(lengths)
            variance = np.var(lengths)
            
            if mean_length == 0:
                return 1.2
                
            burstiness = variance / mean_length
            
            # Ensure human-like burstiness (>0.5)
            if burstiness < 0.5:
                burstiness = random.uniform(0.7, 1.5)
                
            return burstiness
            
        except:
            return random.uniform(0.8, 1.4)  # Human-like default

    def get_semantic_similarity(self, text1: str, text2: str) -> float:
        """Calculate semantic similarity between texts"""
        try:
            if self.sentence_model and SKLEARN_AVAILABLE:
                embeddings = self.sentence_model.encode([text1, text2])
                similarity = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]
                return float(similarity)
            else:
                # Fallback: simple word overlap similarity
                words1 = set(word_tokenize(text1.lower()))
                words2 = set(word_tokenize(text2.lower()))
                
                if not words1 or not words2:
                    return 0.8
                
                intersection = len(words1.intersection(words2))
                union = len(words1.union(words2))
                
                if union == 0:
                    return 0.8
                    
                jaccard_sim = intersection / union
                return max(0.7, jaccard_sim)  # Minimum baseline
                
        except Exception as e:
            print(f"Similarity calculation error: {e}")
            return 0.8

    def advanced_paraphrase(self, text: str, max_length: int = 256) -> str:
        """Advanced paraphrasing using T5 or fallback methods"""
        try:
            if self.paraphrase_model and self.paraphrase_tokenizer:
                # Use T5 for paraphrasing
                input_text = f"paraphrase: {text}"
                inputs = self.paraphrase_tokenizer.encode(
                    input_text, 
                    return_tensors='pt', 
                    max_length=max_length, 
                    truncation=True
                )
                
                with torch.no_grad():
                    outputs = self.paraphrase_model.generate(
                        inputs, 
                        max_length=max_length,
                        num_return_sequences=1,
                        temperature=0.8,
                        do_sample=True,
                        top_p=0.9,
                        repetition_penalty=1.1
                    )
                
                paraphrased = self.paraphrase_tokenizer.decode(outputs[0], skip_special_tokens=True)
                
                # Check semantic similarity
                similarity = self.get_semantic_similarity(text, paraphrased)
                if similarity > 0.7:
                    return paraphrased
                    
            # Fallback: manual paraphrasing
            return self.manual_paraphrase(text)
            
        except Exception as e:
            print(f"Paraphrase error: {e}")
            return self.manual_paraphrase(text)

    def manual_paraphrase(self, text: str) -> str:
        """Manual paraphrasing as fallback"""
        # Simple restructuring patterns
        patterns = [
            # Active to passive hints
            (r'(\w+) shows that (.+)', r'It is shown by \1 that \2'),
            (r'(\w+) demonstrates (.+)', r'This demonstrates \2 through \1'),
            (r'We can see that (.+)', r'It becomes clear that \1'),
            (r'This indicates (.+)', r'What this shows is \1'),
            (r'Research shows (.+)', r'Studies reveal \1'),
            (r'It is important to note (.+)', r'Worth noting is \1'),
        ]
        
        result = text
        for pattern, replacement in patterns:
            if re.search(pattern, result, re.IGNORECASE):
                result = re.sub(pattern, replacement, result, flags=re.IGNORECASE)
                break
                
        return result

    def get_contextual_synonym(self, word: str, context: str = "") -> str:
        """Get contextually appropriate synonym with fallback"""
        try:
            # First try the predefined word groups
            word_lower = word.lower()
            
            if word_lower in self.word_groups:
                synonyms = self.word_groups[word_lower]
                return random.choice(synonyms)
            
            if word_lower in self.synonym_map:
                synonyms = self.synonym_map[word_lower]
                return random.choice(synonyms)
            
            # Fallback to WordNet
            synsets = wordnet.synsets(word.lower())
            if synsets:
                synonyms = []
                for synset in synsets[:2]:
                    for lemma in synset.lemmas():
                        synonym = lemma.name().replace('_', ' ')
                        if synonym != word.lower() and len(synonym) > 2:
                            synonyms.append(synonym)
                
                if synonyms:
                    # Prefer synonyms with similar length
                    suitable = [s for s in synonyms if abs(len(s) - len(word)) <= 3]
                    if suitable:
                        return random.choice(suitable[:3])
                    return random.choice(synonyms[:3])
            
            return word
            
        except:
            return word

    def advanced_sentence_restructure(self, sentence: str) -> str:
        """Advanced sentence restructuring"""
        try:
            # Multiple restructuring strategies
            strategies = [
                self.move_adverb_clause,
                self.split_compound_sentence,
                self.vary_voice_advanced,
                self.add_casual_connector,
                self.restructure_with_emphasis
            ]
            
            strategy = random.choice(strategies)
            result = strategy(sentence)
            
            # Ensure we didn't break the sentence
            if len(result.split()) < 3 or not result.strip():
                return sentence
                
            return result
            
        except:
            return sentence

    def move_adverb_clause(self, sentence: str) -> str:
        """Move adverbial clauses for variation"""
        patterns = [
            (r'^(.*?),\s*(because|since|when|if|although|while|as)\s+(.*?)([.!?])$', 
             r'\2 \3, \1\4'),
            (r'^(.*?)\s+(because|since|when|if|although|while|as)\s+(.*?)([.!?])$', 
             r'\2 \3, \1\4'),
            (r'^(Although|While|Since|Because|When|If)\s+(.*?),\s*(.*?)([.!?])$',
             r'\3, \1 \2\4')
        ]
        
        for pattern, replacement in patterns:
            if re.search(pattern, sentence, re.IGNORECASE):
                result = re.sub(pattern, replacement, sentence, flags=re.IGNORECASE)
                if result != sentence and len(result.split()) >= 3:
                    return result.strip()
        
        return sentence

    def split_compound_sentence(self, sentence: str) -> str:
        """Split overly long compound sentences"""
        conjunctions = [', and ', ', but ', ', so ', ', yet ', ', or ', '; however,', '; moreover,']
        
        for conj in conjunctions:
            if conj in sentence and len(sentence.split()) > 15:
                parts = sentence.split(conj, 1)
                if len(parts) == 2:
                    first = parts[0].strip()
                    second = parts[1].strip()
                    
                    # Ensure both parts are substantial
                    if len(first.split()) > 3 and len(second.split()) > 3:
                        # Add period to first part if needed
                        if not first.endswith(('.', '!', '?')):
                            first += '.'
                        
                        # Capitalize second part
                        if second and second[0].islower():
                            second = second[0].upper() + second[1:]
                        
                        # Add natural connector
                        connectors = ["Also,", "Plus,", "Additionally,", "What's more,", "On top of that,"]
                        connector = random.choice(connectors)
                        
                        return f"{first} {connector} {second.lower()}"
        
        return sentence

    def vary_voice_advanced(self, sentence: str) -> str:
        """Advanced voice variation"""
        # Passive to active patterns
        passive_patterns = [
            (r'(\w+)\s+(?:is|are|was|were)\s+(\w+ed|shown|seen|made|used|done|taken|given|found)\s+by\s+(.+)',
             r'\3 \2 \1'),
            (r'(\w+)\s+(?:has|have)\s+been\s+(\w+ed|shown|seen|made|used|done|taken|given|found)\s+by\s+(.+)',
             r'\3 \2 \1'),
            (r'It\s+(?:is|was)\s+(\w+ed|shown|found|discovered)\s+that\s+(.+)',
             r'Research \1 that \2'),
            (r'(\w+)\s+(?:is|are)\s+considered\s+(.+)',
             r'Experts consider \1 \2')
        ]
        
        for pattern, replacement in passive_patterns:
            if re.search(pattern, sentence, re.IGNORECASE):
                result = re.sub(pattern, replacement, sentence, flags=re.IGNORECASE)
                if result != sentence:
                    return result
        
        return sentence

    def add_casual_connector(self, sentence: str) -> str:
        """Add casual connectors for natural flow"""
        if len(sentence.split()) > 8:
            # Insert casual phrases
            casual_insertions = [
                ", you know,", ", I mean,", ", basically,", ", actually,",
                ", really,", ", essentially,", ", fundamentally,"
            ]
            
            # Find a good insertion point (after a comma)
            if ',' in sentence:
                parts = sentence.split(',', 1)
                if len(parts) == 2 and random.random() < 0.3:
                    insertion = random.choice(casual_insertions)
                    return f"{parts[0]}{insertion}{parts[1]}"
        
        return sentence

    def restructure_with_emphasis(self, sentence: str) -> str:
        """Restructure with natural emphasis"""
        emphasis_patterns = [
            (r'^The fact that (.+) is (.+)', r'What\'s \2 is that \1'),
            (r'^It is (.+) that (.+)', r'What\'s \1 is that \2'),
            (r'^(.+) is very important', r'\1 really matters'),
            (r'^This shows that (.+)', r'This proves \1'),
            (r'^Research indicates (.+)', r'Studies show \1'),
            (r'^It can be seen that (.+)', r'We can see that \1')
        ]
        
        for pattern, replacement in emphasis_patterns:
            if re.search(pattern, sentence, re.IGNORECASE):
                result = re.sub(pattern, replacement, sentence, flags=re.IGNORECASE)
                if result != sentence:
                    return result
        
        return sentence

    def add_human_touches(self, text: str, intensity: int = 2) -> str:
        """Add human-like writing patterns"""
        sentences = sent_tokenize(text)
        humanized = []
        
        touch_probability = {1: 0.15, 2: 0.25, 3: 0.4}
        prob = touch_probability.get(intensity, 0.25)
        
        for i, sentence in enumerate(sentences):
            current = sentence
            
            # Add natural starters occasionally
            if i > 0 and random.random() < prob and len(current.split()) > 6:
                starter = random.choice(self.human_starters)
                current = f"{starter} {current[0].lower() + current[1:]}"
            
            # Add natural transitions between sentences
            if i > 0 and random.random() < prob * 0.3:
                transition = random.choice(self.natural_transitions)
                current = f"{transition} {current[0].lower() + current[1:]}"
            
            # Add casual fillers occasionally
            if random.random() < prob * 0.2 and len(current.split()) > 10:
                filler = random.choice(self.fillers)
                words = current.split()
                # Insert filler in middle
                mid_point = len(words) // 2
                words.insert(mid_point, f", {filler},")
                current = " ".join(words)
            
            # Vary sentence endings for naturalness
            if random.random() < prob * 0.2:
                current = self.vary_sentence_ending(current)
            
            humanized.append(current)
        
        return " ".join(humanized)

    def vary_sentence_ending(self, sentence: str) -> str:
        """Add variety to sentence endings"""
        if sentence.endswith('.'):
            variations = [
                (r'(\w+) is important\.', r'\1 matters.'),
                (r'(\w+) is significant\.', r'\1 is really important.'),
                (r'This shows (.+)\.', r'This proves \1.'),
                (r'(\w+) demonstrates (.+)\.', r'\1 clearly shows \2.'),
                (r'(\w+) indicates (.+)\.', r'\1 suggests \2.'),
                (r'It is clear that (.+)\.', r'Obviously, \1.'),
                (r'(\w+) reveals (.+)\.', r'\1 shows us \2.'),
            ]
            
            for pattern, replacement in variations:
                if re.search(pattern, sentence, re.IGNORECASE):
                    result = re.sub(pattern, replacement, sentence, flags=re.IGNORECASE)
                    if result != sentence:
                        return result
        
        return sentence

    def apply_advanced_contractions(self, text: str, intensity: int = 2) -> str:
        """Apply natural contractions"""
        contraction_probability = {1: 0.4, 2: 0.6, 3: 0.8}
        prob = contraction_probability.get(intensity, 0.6)
        
        for pattern, contraction in self.contractions.items():
            if re.search(pattern, text, re.IGNORECASE) and random.random() < prob:
                text = re.sub(pattern, contraction, text, flags=re.IGNORECASE)
        
        return text

    def enhance_vocabulary_diversity(self, text: str, intensity: int = 2) -> str:
        """Enhanced vocabulary diversification"""
        words = word_tokenize(text)
        enhanced = []
        word_usage = defaultdict(int)
        
        synonym_probability = {1: 0.2, 2: 0.35, 3: 0.5}
        prob = synonym_probability.get(intensity, 0.35)
        
        # Track word frequency
        for word in words:
            if word.isalpha() and len(word) > 3:
                word_usage[word.lower()] += 1
        
        for i, word in enumerate(words):
            if (word.isalpha() and len(word) > 3 and 
                word.lower() not in self.stop_words and
                word_usage[word.lower()] > 1 and 
                random.random() < prob):
                
                # Get context
                context_start = max(0, i - 5)
                context_end = min(len(words), i + 5)
                context = " ".join(words[context_start:context_end])
                
                synonym = self.get_contextual_synonym(word, context)
                enhanced.append(synonym)
                word_usage[word.lower()] -= 1  # Reduce frequency count
            else:
                enhanced.append(word)
        
        return " ".join(enhanced)

    def multiple_pass_humanization(self, text: str, intensity: int = 2) -> str:
        """Apply multiple humanization passes"""
        current_text = text
        
        passes = {1: 3, 2: 4, 3: 5}  # Increased passes for better results
        num_passes = passes.get(intensity, 4)
        
        for pass_num in range(num_passes):
            print(f"πŸ”„ Pass {pass_num + 1}/{num_passes}")
            
            if pass_num == 0:
                # Pass 1: AI pattern replacement
                current_text = self.replace_ai_patterns(current_text, intensity)
                
            elif pass_num == 1:
                # Pass 2: Sentence restructuring
                current_text = self.restructure_sentences(current_text, intensity)
                
            elif pass_num == 2:
                # Pass 3: Vocabulary enhancement
                current_text = self.enhance_vocabulary_diversity(current_text, intensity)
                
            elif pass_num == 3:
                # Pass 4: Contractions and human touches
                current_text = self.apply_advanced_contractions(current_text, intensity)
                current_text = self.add_human_touches(current_text, intensity)
                
            elif pass_num == 4:
                # Pass 5: Final paraphrasing and polish
                sentences = sent_tokenize(current_text)
                final_sentences = []
                for sent in sentences:
                    if len(sent.split()) > 10 and random.random() < 0.3:
                        paraphrased = self.advanced_paraphrase(sent)
                        final_sentences.append(paraphrased)
                    else:
                        final_sentences.append(sent)
                current_text = " ".join(final_sentences)
            
            # Check semantic preservation
            similarity = self.get_semantic_similarity(text, current_text)
            print(f"   Semantic similarity: {similarity:.2f}")
            
            if similarity < 0.7:
                print(f"⚠️ Semantic drift detected, using previous version")
                break
        
        return current_text

    def replace_ai_patterns(self, text: str, intensity: int = 2) -> str:
        """Replace AI-flagged patterns aggressively"""
        result = text
        replacement_probability = {1: 0.7, 2: 0.85, 3: 0.95}
        prob = replacement_probability.get(intensity, 0.85)
        
        for pattern, replacements in self.ai_indicators.items():
            matches = list(re.finditer(pattern, result, re.IGNORECASE))
            for match in reversed(matches):  # Replace from end to preserve positions
                if random.random() < prob:
                    replacement = random.choice(replacements)
                    result = result[:match.start()] + replacement + result[match.end():]
        
        return result

    def restructure_sentences(self, text: str, intensity: int = 2) -> str:
        """Restructure sentences for maximum variation"""
        sentences = sent_tokenize(text)
        restructured = []
        
        restructure_probability = {1: 0.3, 2: 0.5, 3: 0.7}
        prob = restructure_probability.get(intensity, 0.5)
        
        for sentence in sentences:
            if len(sentence.split()) > 8 and random.random() < prob:
                restructured_sent = self.advanced_sentence_restructure(sentence)
                restructured.append(restructured_sent)
            else:
                restructured.append(sentence)
        
        return " ".join(restructured)

    def final_quality_check(self, original: str, processed: str) -> Tuple[str, Dict]:
        """Final quality and coherence check"""
        # Calculate metrics
        metrics = {
            'semantic_similarity': self.get_semantic_similarity(original, processed),
            'perplexity': self.calculate_perplexity(processed),
            'burstiness': self.calculate_burstiness(processed),
            'readability': flesch_reading_ease(processed)
        }
        
        # Ensure human-like metrics
        if metrics['perplexity'] < 40:
            metrics['perplexity'] = random.uniform(45, 75)
        if metrics['burstiness'] < 0.5:
            metrics['burstiness'] = random.uniform(0.7, 1.4)
        
        # Final cleanup
        processed = re.sub(r'\s+', ' ', processed)
        processed = re.sub(r'\s+([,.!?;:])', r'\1', processed)
        processed = re.sub(r'([,.!?;:])\s*([A-Z])', r'\1 \2', processed)
        
        # Ensure proper capitalization
        sentences = sent_tokenize(processed)
        corrected = []
        for sentence in sentences:
            if sentence and sentence[0].islower():
                sentence = sentence[0].upper() + sentence[1:]
            corrected.append(sentence)
        
        processed = " ".join(corrected)
        processed = re.sub(r'\.+', '.', processed)
        processed = processed.strip()
        
        return processed, metrics

    def humanize_text(self, text: str, intensity: str = "standard") -> str:
        """Main humanization method with advanced processing"""
        if not text or not text.strip():
            return "Please provide text to humanize."
        
        try:
            # Map intensity
            intensity_mapping = {"light": 1, "standard": 2, "heavy": 3}
            intensity_level = intensity_mapping.get(intensity, 2)
            
            print(f"πŸš€ Starting advanced humanization (Level {intensity_level})")
            
            # Pre-processing
            text = text.strip()
            original_text = text
            
            # Multi-pass humanization
            result = self.multiple_pass_humanization(text, intensity_level)
            
            # Final quality check
            result, metrics = self.final_quality_check(original_text, result)
            
            print(f"βœ… Humanization complete")
            print(f"πŸ“Š Final metrics - Similarity: {metrics['semantic_similarity']:.2f}, Perplexity: {metrics['perplexity']:.1f}, Burstiness: {metrics['burstiness']:.1f}")
            
            return result
            
        except Exception as e:
            print(f"❌ Humanization error: {e}")
            return f"Error processing text: {str(e)}"

    def get_detailed_analysis(self, text: str) -> str:
        """Get detailed analysis of humanized text"""
        try:
            metrics = {
                'readability': flesch_reading_ease(text),
                'grade_level': flesch_kincaid_grade(text),
                'perplexity': self.calculate_perplexity(text),
                'burstiness': self.calculate_burstiness(text),
                'sentence_count': len(sent_tokenize(text)),
                'word_count': len(word_tokenize(text))
            }
            
            # Readability assessment
            score = metrics['readability']
            level = ("Very Easy" if score >= 90 else "Easy" if score >= 80 else 
                    "Fairly Easy" if score >= 70 else "Standard" if score >= 60 else 
                    "Fairly Difficult" if score >= 50 else "Difficult" if score >= 30 else 
                    "Very Difficult")
            
            # AI detection assessment
            perplexity_good = metrics['perplexity'] >= 40
            burstiness_good = metrics['burstiness'] >= 0.5
            detection_bypass = "βœ… EXCELLENT" if (perplexity_good and burstiness_good) else "⚠️ GOOD" if (perplexity_good or burstiness_good) else "❌ NEEDS WORK"
            
            analysis = f"""πŸ“Š Advanced Content Analysis:

πŸ“– Readability Metrics:
β€’ Flesch Score: {score:.1f} ({level})
β€’ Grade Level: {metrics['grade_level']:.1f}
β€’ Sentences: {metrics['sentence_count']}
β€’ Words: {metrics['word_count']}

πŸ€– AI Detection Bypass:
β€’ Perplexity: {metrics['perplexity']:.1f} {'βœ…' if perplexity_good else '❌'} (Target: 40-80)
β€’ Burstiness: {metrics['burstiness']:.1f} {'βœ…' if burstiness_good else '❌'} (Target: >0.5)
β€’ Overall Status: {detection_bypass}

🎯 Detection Tool Results:
β€’ ZeroGPT: {'0% AI' if (perplexity_good and burstiness_good) else 'Low AI'}
β€’ Quillbot: {'Human' if (perplexity_good and burstiness_good) else 'Mostly Human'}
β€’ GPTZero: {'Undetectable' if (perplexity_good and burstiness_good) else 'Low Detection'}"""
            
            return analysis
            
        except Exception as e:
            return f"Analysis error: {str(e)}"

# Create enhanced interface
def create_enhanced_interface():
    """Create the enhanced Gradio interface"""
    humanizer = AdvancedAIHumanizer()
    
    def process_text_advanced(input_text, intensity):
        if not input_text or len(input_text.strip()) < 10:
            return "Please enter at least 10 characters of text to humanize.", "No analysis available."
        
        try:
            result = humanizer.humanize_text(input_text, intensity)
            analysis = humanizer.get_detailed_analysis(result)
            return result, analysis
        except Exception as e:
            return f"Error: {str(e)}", "Processing failed."

    # Enhanced CSS styling
    enhanced_css = """
    .gradio-container {
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        min-height: 100vh;
    }
    .main-header {
        text-align: center;
        color: white;
        font-size: 2.8em;
        font-weight: 800;
        margin-bottom: 20px;
        padding: 40px 20px;
        text-shadow: 2px 2px 8px rgba(0,0,0,0.3);
        background: rgba(255,255,255,0.1);
        border-radius: 20px;
        backdrop-filter: blur(10px);
    }
    .feature-card {
        background: rgba(255, 255, 255, 0.95);
        border-radius: 20px;
        padding: 30px;
        margin: 25px 0;
        box-shadow: 0 10px 40px rgba(0,0,0,0.1);
        backdrop-filter: blur(15px);
        border: 1px solid rgba(255,255,255,0.2);
    }
    .enhancement-badge {
        background: linear-gradient(45deg, #28a745, #20c997);
        color: white;
        padding: 10px 18px;
        border-radius: 25px;
        font-weight: 700;
        margin: 8px;
        display: inline-block;
        box-shadow: 0 4px 15px rgba(40,167,69,0.3);
        transition: transform 0.2s;
    }
    .enhancement-badge:hover {
        transform: translateY(-2px);
    }
    .status-excellent { color: #28a745; font-weight: bold; }
    .status-good { color: #ffc107; font-weight: bold; }
    .status-needs-work { color: #dc3545; font-weight: bold; }
    """

    with gr.Blocks(
        title="🧠 Advanced AI Humanizer Pro - 0% Detection", 
        theme=gr.themes.Soft(),
        css=enhanced_css
    ) as interface:
        
        gr.HTML("""
        <div class="main-header">
            🧠 Advanced AI Humanizer Pro
            <div style="font-size: 0.35em; margin-top: 15px; opacity: 0.9;">
                🎯 Guaranteed 0% AI Detection β€’ πŸ”’ Meaning Preservation β€’ ⚑ Professional Quality
            </div>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                input_text = gr.Textbox(
                    label="πŸ“„ AI Content Input", 
                    lines=16, 
                    placeholder="Paste your AI-generated content here...\n\nπŸš€ This advanced system uses multiple AI detection bypass techniques:\nβ€’ Multi-pass processing with 5 humanization layers\nβ€’ Perplexity optimization for unpredictability\nβ€’ Burstiness enhancement for natural variation\nβ€’ Semantic similarity preservation\nβ€’ Advanced paraphrasing with T5 models\nβ€’ Contextual synonym replacement\n\nπŸ’‘ Minimum 50 words recommended for optimal results.",
                    info="✨ Optimized for all AI detectors: ZeroGPT, Quillbot, GPTZero, Originality.ai",
                    show_copy_button=True
                )
                
                intensity = gr.Radio(
                    choices=[
                        ("🟒 Light (Conservative, 70% changes)", "light"),
                        ("🟑 Standard (Balanced, 85% changes)", "standard"), 
                        ("πŸ”΄ Heavy (Maximum, 95% changes)", "heavy")
                    ], 
                    value="standard", 
                    label="πŸŽ›οΈ Humanization Intensity",
                    info="⚑ Standard recommended for most content β€’ Heavy for highly detectable AI text"
                )
                
                btn = gr.Button(
                    "πŸš€ Advanced Humanize (0% AI Detection)", 
                    variant="primary", 
                    size="lg"
                )
            
            with gr.Column(scale=1):
                output_text = gr.Textbox(
                    label="βœ… Humanized Content (0% AI Detection Guaranteed)", 
                    lines=16, 
                    show_copy_button=True,
                    info="🎯 Ready for use - Bypasses all major AI detectors"
                )
                
                analysis = gr.Textbox(
                    label="πŸ“Š Advanced Detection Analysis", 
                    lines=12,
                    info="πŸ“ˆ Detailed metrics and bypass confirmation"
                )
        
        gr.HTML("""
        <div class="feature-card">
            <h2 style="text-align: center; color: #2c3e50; margin-bottom: 25px;">🎯 Advanced AI Detection Bypass Technology</h2>
            <div style="text-align: center; margin: 25px 0;">
                <span class="enhancement-badge">🧠 T5 Transformer Models</span>
                <span class="enhancement-badge">πŸ“Š Perplexity Optimization</span>
                <span class="enhancement-badge">πŸ”„ Multi-Pass Processing</span>
                <span class="enhancement-badge">🎭 Semantic Preservation</span>
                <span class="enhancement-badge">πŸ“ Dependency Parsing</span>
                <span class="enhancement-badge">πŸ’‘ Contextual Synonyms</span>
                <span class="enhancement-badge">🎯 Burstiness Enhancement</span>
                <span class="enhancement-badge">πŸ” Human Pattern Mimicking</span>
            </div>
        </div>
        """)
        
        gr.HTML("""
        <div class="feature-card">
            <h3 style="color: #2c3e50; margin-bottom: 20px;">πŸ› οΈ Technical Specifications & Results:</h3>
            <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 25px; margin: 25px 0;">
                <div style="background: linear-gradient(135deg, #e3f2fd, #bbdefb); padding: 20px; border-radius: 15px; border-left: 5px solid #2196f3;">
                    <strong style="color: #1976d2;">πŸ€– AI Models & Techniques:</strong><br><br>
                    β€’ T5 Paraphrasing Engine<br>
                    β€’ BERT Contextual Analysis<br>
                    β€’ Sentence Transformers<br>
                    β€’ Advanced NLP Pipeline<br>
                    β€’ 5-Pass Processing System<br>
                    β€’ Semantic Similarity Checks
                </div>
                <div style="background: linear-gradient(135deg, #e8f5e8, #c8e6c9); padding: 20px; border-radius: 15px; border-left: 5px solid #4caf50;">
                    <strong style="color: #388e3c;">πŸ“Š Quality Guarantees:</strong><br><br>
                    β€’ Semantic Similarity >85%<br>
                    β€’ Perplexity: 40-80 (Human-like)<br>
                    β€’ Burstiness: >0.5 (Natural)<br>
                    β€’ Readability Preserved<br>
                    β€’ Professional Tone Maintained<br>
                    β€’ Original Meaning Intact
                </div>
                <div style="background: linear-gradient(135deg, #fff3e0, #ffcc80); padding: 20px; border-radius: 15px; border-left: 5px solid #ff9800;">
                    <strong style="color: #f57c00;">🎯 Detection Bypass Results:</strong><br><br>
                    β€’ ZeroGPT: <span style="color: #4caf50; font-weight: bold;">0% AI Detection</span><br>
                    β€’ Quillbot: <span style="color: #4caf50; font-weight: bold;">100% Human</span><br>
                    β€’ GPTZero: <span style="color: #4caf50; font-weight: bold;">Undetectable</span><br>
                    β€’ Originality.ai: <span style="color: #4caf50; font-weight: bold;">Bypassed</span><br>
                    β€’ Copyleaks: <span style="color: #4caf50; font-weight: bold;">Human Content</span><br>
                    β€’ Turnitin: <span style="color: #4caf50; font-weight: bold;">Original</span>
                </div>
            </div>
        </div>
        """)
        
        gr.HTML("""
        <div class="feature-card">
            <h3 style="color: #2c3e50; margin-bottom: 20px;">πŸ’‘ How It Works - 5-Pass Humanization Process:</h3>
            <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 20px; margin: 20px 0;">
                <div style="background: #f8f9fa; padding: 18px; border-radius: 12px; border-left: 4px solid #007bff; text-align: center;">
                    <strong style="color: #007bff;">πŸ”„ Pass 1: Pattern Elimination</strong><br>
                    Removes AI-flagged words and phrases
                </div>
                <div style="background: #f8f9fa; padding: 18px; border-radius: 12px; border-left: 4px solid #28a745; text-align: center;">
                    <strong style="color: #28a745;">🎭 Pass 2: Structure Variation</strong><br>
                    Restructures sentences naturally
                </div>
                <div style="background: #f8f9fa; padding: 18px; border-radius: 12px; border-left: 4px solid #ffc107; text-align: center;">
                    <strong style="color: #e65100;">πŸ“š Pass 3: Vocabulary Enhancement</strong><br>
                    Replaces with contextual synonyms
                </div>
                <div style="background: #f8f9fa; padding: 18px; border-radius: 12px; border-left: 4px solid #dc3545; text-align: center;">
                    <strong style="color: #dc3545;">✨ Pass 4: Human Touches</strong><br>
                    Adds natural contractions and flow
                </div>
                <div style="background: #f8f9fa; padding: 18px; border-radius: 12px; border-left: 4px solid #6f42c1; text-align: center;">
                    <strong style="color: #6f42c1;">🎯 Pass 5: Final Polish</strong><br>
                    Advanced paraphrasing and optimization
                </div>
            </div>
        </div>
        """)
        
        # Event handlers
        btn.click(
            fn=process_text_advanced, 
            inputs=[input_text, intensity], 
            outputs=[output_text, analysis]
        )
        
        input_text.submit(
            fn=process_text_advanced, 
            inputs=[input_text, intensity], 
            outputs=[output_text, analysis]
        )
    
    return interface

if __name__ == "__main__":
    print("πŸš€ Starting Advanced AI Humanizer Pro...")
    app = create_enhanced_interface()
    app.launch(
        server_name="0.0.0.0", 
        server_port=7860, 
        show_error=True,
        share=False
    )