File size: 5,545 Bytes
6de055e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be03ceb
 
 
 
82f7b02
be03ceb
82f7b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#  * Neither the name of NVIDIA CORPORATION nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import requests
import soundfile as sf
import json
import numpy as np
import argparse

def get_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    parser.add_argument(
        "--server-url",
        type=str,
        default="localhost:8000",
        help="Address of the server",
    )

    parser.add_argument(
        "--reference-audio",
        type=str,
        default="../../example/prompt_audio.wav",
        help="Path to a single audio file. It can't be specified at the same time with --manifest-dir",
    )

    parser.add_argument(
        "--reference-text",
        type=str,
        default="吃燕窝就选燕之屋,本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝,营养更均衡,本节目由豆本豆豆奶特约播出。",
        help="",
    )

    parser.add_argument(
        "--target-text",
        type=str,
        default="身临其境,换新体验。塑造开源语音合成新范式,让智能语音更自然。",
        help="",
    )

    parser.add_argument(
        "--model-name",
        type=str,
        default="spark_tts",
        choices=[
            "f5_tts", "spark_tts"
        ],
        help="triton model_repo module name to request: transducer for k2, attention_rescoring for wenet offline, streaming_wenet for wenet streaming, infer_pipeline for paraformer large offline",
    )

    parser.add_argument(
        "--output-audio",
        type=str,
        default="output.wav",
        help="Path to save the output audio",
    )
    return parser.parse_args()

def prepare_request(
    waveform,
    reference_text,
    target_text,
    sample_rate=16000,
    padding_duration: int = None,
    audio_save_dir: str = "./",
):
    assert len(waveform.shape) == 1, "waveform should be 1D"
    lengths = np.array([[len(waveform)]], dtype=np.int32)
    if padding_duration:
        # padding to nearset 10 seconds
        samples = np.zeros(
            (
                1,
                padding_duration
                * sample_rate
                * ((int(duration) // padding_duration) + 1),
            ),
            dtype=np.float32,
        )

        samples[0, : len(waveform)] = waveform
    else:
        samples = waveform
        
    samples = samples.reshape(1, -1).astype(np.float32)

    data = {
        "inputs":[
            {
                "name": "reference_wav",
                "shape": samples.shape,
                "datatype": "FP32",
                "data": samples.tolist()
            },
            {
                "name": "reference_wav_len",
                "shape": lengths.shape,
                "datatype": "INT32",
                "data": lengths.tolist(),
            },
            {
                "name": "reference_text",
                "shape": [1, 1],
                "datatype": "BYTES",
                "data": [reference_text]
            },
            {
                "name": "target_text",
                "shape": [1, 1],
                "datatype": "BYTES",
                "data": [target_text]
            }
        ]
    }

    return data

if __name__ == "__main__":
    args = get_args()
    server_url = args.server_url
    if not server_url.startswith(("http://", "https://")):
        server_url = f"http://{server_url}"
    
    url = f"{server_url}/v2/models/{args.model_name}/infer"
    waveform, sr = sf.read(args.reference_audio)
    assert sr == 16000, "sample rate hardcoded in server"
    
    samples = np.array(waveform, dtype=np.float32)
    data = prepare_request(samples, args.reference_text, args.target_text)

    rsp = requests.post(
        url,
        headers={"Content-Type": "application/json"},
        json=data,
        verify=False,
        params={"request_id": '0'}
    )
    result = rsp.json()
    audio = result["outputs"][0]["data"]
    audio = np.array(audio, dtype=np.float32)
    sf.write(args.output_audio, audio, 16000, "PCM_16")