File size: 5,399 Bytes
0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 be03ceb 0955e96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import json
import torch
from torch.utils.dlpack import to_dlpack
import triton_python_backend_utils as pb_utils
import os
import numpy as np
from sparktts.models.audio_tokenizer import BiCodecTokenizer
class TritonPythonModel:
"""Triton Python model for audio tokenization.
This model takes reference audio input and extracts semantic and global tokens
using BiCodec tokenizer.
"""
def initialize(self, args):
"""Initialize the model.
Args:
args: Dictionary containing model configuration
"""
# Parse model parameters
parameters = json.loads(args['model_config'])['parameters']
model_params = {k: v["string_value"] for k, v in parameters.items()}
# Initialize tokenizer
self.device = torch.device("cuda")
self.audio_tokenizer = BiCodecTokenizer(model_params["model_dir"],
device=self.device)
def get_ref_clip(self, wav: np.ndarray) -> np.ndarray:
"""Extract reference audio clip for speaker embedding.
Args:
wav: Input waveform array
Returns:
Reference clip of fixed duration
"""
SAMPLE_RATE = 16000
REF_SEGMENT_DURATION = 6 # seconds
LATENT_HOP_LENGTH = 320
ref_segment_length = (
int(SAMPLE_RATE * REF_SEGMENT_DURATION)
// LATENT_HOP_LENGTH
* LATENT_HOP_LENGTH
)
wav_length = len(wav)
if ref_segment_length > wav_length:
# Repeat and truncate if input is too short
repeat_times = ref_segment_length // wav_length + 1
wav = np.tile(wav, repeat_times)
return wav[:ref_segment_length]
def execute(self, requests):
"""Execute inference on the batched requests.
Args:
requests: List of inference requests
Returns:
List of inference responses containing tokenized outputs
"""
reference_wav_list = []
reference_wav_ref_clip_list = []
# Process each request in batch
for request in requests:
# Extract input tensors
wav_array = pb_utils.get_input_tensor_by_name(
request, "reference_wav").as_numpy()
wav_len = pb_utils.get_input_tensor_by_name(
request, "reference_wav_len").as_numpy().item()
# Prepare inputs
wav = wav_array[:, :wav_len].squeeze(0)
reference_wav_list.append(wav)
wav_ref_clip = self.get_ref_clip(wav)
reference_wav_ref_clip_list.append(torch.from_numpy(wav_ref_clip))
# Batch process through tokenizer
ref_wav_clip_tensor = torch.stack(reference_wav_ref_clip_list, dim=0)
wav2vec2_features = self.audio_tokenizer.extract_wav2vec2_features(
reference_wav_list)
audio_tokenizer_input = {
"ref_wav": ref_wav_clip_tensor.to(self.device),
"feat": wav2vec2_features.to(self.device),
}
semantic_tokens, global_tokens = self.audio_tokenizer.model.tokenize(
audio_tokenizer_input)
# Prepare responses
responses = []
for i in range(len(requests)):
global_tokens_tensor = pb_utils.Tensor.from_dlpack(
"global_tokens", to_dlpack(global_tokens[i]))
semantic_tokens_tensor = pb_utils.Tensor.from_dlpack(
"semantic_tokens", to_dlpack(semantic_tokens[i]))
inference_response = pb_utils.InferenceResponse(
output_tensors=[global_tokens_tensor, semantic_tokens_tensor])
responses.append(inference_response)
return responses
|