Spaces:
Running
on
T4
Running
on
T4
Commit
·
dde51bf
1
Parent(s):
b80428b
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
MODEL_NAME = "openai/whisper-tiny"
|
| 7 |
+
BATCH_SIZE = 8
|
| 8 |
+
|
| 9 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
| 10 |
+
|
| 11 |
+
pipe = pipeline(
|
| 12 |
+
task="automatic-speech-recognition",
|
| 13 |
+
model=MODEL_NAME,
|
| 14 |
+
chunk_length_s=30,
|
| 15 |
+
device=device,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
|
| 20 |
+
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
|
| 21 |
+
if seconds is not None:
|
| 22 |
+
milliseconds = round(seconds * 1000.0)
|
| 23 |
+
|
| 24 |
+
hours = milliseconds // 3_600_000
|
| 25 |
+
milliseconds -= hours * 3_600_000
|
| 26 |
+
|
| 27 |
+
minutes = milliseconds // 60_000
|
| 28 |
+
milliseconds -= minutes * 60_000
|
| 29 |
+
|
| 30 |
+
seconds = milliseconds // 1_000
|
| 31 |
+
milliseconds -= seconds * 1_000
|
| 32 |
+
|
| 33 |
+
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
| 34 |
+
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
| 35 |
+
else:
|
| 36 |
+
# we have a malformed timestamp so just return it as is
|
| 37 |
+
return seconds
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def transcribe(file, task, return_timestamps):
|
| 41 |
+
outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=return_timestamps)
|
| 42 |
+
text = outputs["text"]
|
| 43 |
+
if return_timestamps:
|
| 44 |
+
timestamps = outputs["chunks"]
|
| 45 |
+
timestamps = [
|
| 46 |
+
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
|
| 47 |
+
for chunk in timestamps
|
| 48 |
+
]
|
| 49 |
+
text = "\n".join(str(feature) for feature in timestamps)
|
| 50 |
+
return text
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
demo = gr.Blocks()
|
| 54 |
+
|
| 55 |
+
mic_transcribe = gr.Interface(
|
| 56 |
+
fn=transcribe,
|
| 57 |
+
inputs=[
|
| 58 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
| 59 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
| 60 |
+
gr.inputs.Checkbox(default=False, label="Return timestamps"),
|
| 61 |
+
],
|
| 62 |
+
outputs="text",
|
| 63 |
+
layout="horizontal",
|
| 64 |
+
theme="huggingface",
|
| 65 |
+
title="Whisper Demo: Transcribe Audio",
|
| 66 |
+
description=(
|
| 67 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
| 68 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
| 69 |
+
" of arbitrary length."
|
| 70 |
+
),
|
| 71 |
+
allow_flagging="never",
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
file_transcribe = gr.Interface(
|
| 75 |
+
fn=transcribe,
|
| 76 |
+
inputs=[
|
| 77 |
+
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
|
| 78 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
| 79 |
+
gr.inputs.Checkbox(default=False, label="Return timestamps"),
|
| 80 |
+
],
|
| 81 |
+
outputs="text",
|
| 82 |
+
layout="horizontal",
|
| 83 |
+
theme="huggingface",
|
| 84 |
+
title="Whisper Demo: Transcribe Audio",
|
| 85 |
+
description=(
|
| 86 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
| 87 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
| 88 |
+
" of arbitrary length."
|
| 89 |
+
),
|
| 90 |
+
allow_flagging="never",
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
with demo:
|
| 94 |
+
gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"])
|
| 95 |
+
|
| 96 |
+
demo.launch(enable_queue=True)
|