Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import torch
|
|
3 |
import sys
|
4 |
import traceback
|
5 |
import os
|
6 |
-
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
def system_info():
|
9 |
try:
|
@@ -27,68 +26,171 @@ def system_info():
|
|
27 |
except Exception as e:
|
28 |
return f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
29 |
|
30 |
-
def
|
31 |
try:
|
32 |
result = []
|
33 |
-
result.append("Testing
|
34 |
-
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
result.append("llama-cpp-python not installed. Installing now...")
|
41 |
-
import subprocess
|
42 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "llama-cpp-python"])
|
43 |
-
import llama_cpp
|
44 |
-
result.append(f"llama_cpp version: {llama_cpp.__version__}")
|
45 |
-
|
46 |
-
# Download the model if not already downloaded
|
47 |
-
model_id = "google/gemma-3-27b-it-qat-q4_0-gguf"
|
48 |
-
model_filename = "gemma-3-27b-it-qat-q4_0.gguf"
|
49 |
-
|
50 |
-
result.append(f"Downloading {model_id} if not already present...")
|
51 |
-
model_path = hf_hub_download(
|
52 |
-
repo_id=model_id,
|
53 |
-
filename=model_filename,
|
54 |
-
resume_download=True
|
55 |
-
)
|
56 |
-
result.append(f"Model downloaded to: {model_path}")
|
57 |
|
58 |
-
|
59 |
-
result.append("Loading model...")
|
60 |
-
from llama_cpp import Llama
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
)
|
67 |
|
68 |
-
# Generate text
|
69 |
result.append("Generating text...")
|
70 |
prompt = "Write a short poem about artificial intelligence."
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
return "\n".join(result)
|
85 |
except Exception as e:
|
86 |
return f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
87 |
|
88 |
# Create Gradio interface
|
89 |
-
with gr.Blocks(title="
|
90 |
-
gr.Markdown("#
|
91 |
-
gr.Markdown("Testing
|
92 |
|
93 |
with gr.Tab("System Info"):
|
94 |
with gr.Row():
|
@@ -103,18 +205,57 @@ with gr.Blocks(title="Gemma 3 GGUF Test") as demo:
|
|
103 |
outputs=[info_result]
|
104 |
)
|
105 |
|
106 |
-
with gr.Tab("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
with gr.Row():
|
108 |
with gr.Column():
|
109 |
-
|
110 |
with gr.Column():
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
fn=
|
115 |
inputs=[],
|
116 |
-
outputs=[
|
117 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
# Launch the app
|
120 |
demo.launch()
|
|
|
3 |
import sys
|
4 |
import traceback
|
5 |
import os
|
|
|
6 |
|
7 |
def system_info():
|
8 |
try:
|
|
|
26 |
except Exception as e:
|
27 |
return f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
28 |
|
29 |
+
def test_phi3_mini():
|
30 |
try:
|
31 |
result = []
|
32 |
+
result.append("Testing Phi-3 Mini model...")
|
33 |
+
|
34 |
+
# Use Phi-3 Mini model with 4-bit quantization
|
35 |
+
model_id = "microsoft/Phi-3-mini-4k-instruct"
|
36 |
+
|
37 |
+
result.append(f"Loading tokenizer from {model_id}...")
|
38 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
|
41 |
|
42 |
+
result.append("Loading model with quantization...")
|
43 |
+
from transformers import BitsAndBytesConfig
|
44 |
+
|
45 |
+
quantization_config = BitsAndBytesConfig(
|
46 |
+
load_in_4bit=True,
|
47 |
+
bnb_4bit_compute_dtype=torch.float16,
|
48 |
+
bnb_4bit_quant_type="nf4"
|
49 |
+
)
|
50 |
+
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
model_id,
|
53 |
+
quantization_config=quantization_config,
|
54 |
+
device_map="auto"
|
55 |
)
|
56 |
|
|
|
57 |
result.append("Generating text...")
|
58 |
prompt = "Write a short poem about artificial intelligence."
|
59 |
|
60 |
+
# Format prompt for Phi-3
|
61 |
+
messages = [
|
62 |
+
{"role": "user", "content": prompt}
|
63 |
+
]
|
64 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
65 |
+
|
66 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
67 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
68 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
69 |
+
|
70 |
+
# Extract the assistant's response
|
71 |
+
if "<assistant>" in generated_text and "</assistant>" in generated_text:
|
72 |
+
response = generated_text.split("<assistant>")[1].split("</assistant>")[0].strip()
|
73 |
+
else:
|
74 |
+
response = generated_text.replace(prompt, "").strip()
|
75 |
+
|
76 |
+
result.append(f"Generated text: {response}")
|
77 |
+
result.append("Phi-3 Mini test successful!")
|
78 |
+
|
79 |
+
return "\n".join(result)
|
80 |
+
except Exception as e:
|
81 |
+
return f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
82 |
+
|
83 |
+
def test_image_classification():
|
84 |
+
try:
|
85 |
+
result = []
|
86 |
+
result.append("Testing image classification...")
|
87 |
+
|
88 |
+
# Use a lightweight vision model
|
89 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
90 |
+
|
91 |
+
result.append("Loading image processor and model...")
|
92 |
+
processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
93 |
+
model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50")
|
94 |
+
|
95 |
+
result.append("Loading test image...")
|
96 |
+
import requests
|
97 |
+
from PIL import Image
|
98 |
+
from io import BytesIO
|
99 |
+
|
100 |
+
response = requests.get("https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg")
|
101 |
+
img = Image.open(BytesIO(response.content))
|
102 |
+
|
103 |
+
result.append("Processing image...")
|
104 |
+
inputs = processor(images=img, return_tensors="pt")
|
105 |
+
outputs = model(**inputs)
|
106 |
+
|
107 |
+
# Get predicted class
|
108 |
+
predicted_class_idx = outputs.logits.argmax(-1).item()
|
109 |
+
predicted_class = model.config.id2label[predicted_class_idx]
|
110 |
+
|
111 |
+
result.append(f"Predicted class: {predicted_class}")
|
112 |
+
result.append("Image classification test successful!")
|
113 |
+
|
114 |
+
return "\n".join(result)
|
115 |
+
except Exception as e:
|
116 |
+
return f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
117 |
+
|
118 |
+
def test_phi3_with_image():
|
119 |
+
try:
|
120 |
+
result = []
|
121 |
+
result.append("Testing Phi-3 Mini with image description...")
|
122 |
+
|
123 |
+
# First, classify the image
|
124 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
125 |
+
import requests
|
126 |
+
from PIL import Image
|
127 |
+
from io import BytesIO
|
128 |
+
|
129 |
+
result.append("Loading image and classifying it...")
|
130 |
+
img_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
131 |
+
img_model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50")
|
132 |
+
|
133 |
+
response = requests.get("https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg")
|
134 |
+
img = Image.open(BytesIO(response.content))
|
135 |
+
|
136 |
+
inputs = img_processor(images=img, return_tensors="pt")
|
137 |
+
outputs = img_model(**inputs)
|
138 |
+
|
139 |
+
predicted_class_idx = outputs.logits.argmax(-1).item()
|
140 |
+
predicted_class = img_model.config.id2label[predicted_class_idx]
|
141 |
+
|
142 |
+
result.append(f"Image classified as: {predicted_class}")
|
143 |
+
|
144 |
+
# Now use Phi-3 to describe the image based on the classification
|
145 |
+
result.append("Loading Phi-3 Mini model...")
|
146 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
147 |
+
|
148 |
+
model_id = "microsoft/Phi-3-mini-4k-instruct"
|
149 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
150 |
+
|
151 |
+
quantization_config = BitsAndBytesConfig(
|
152 |
+
load_in_4bit=True,
|
153 |
+
bnb_4bit_compute_dtype=torch.float16,
|
154 |
+
bnb_4bit_quant_type="nf4"
|
155 |
+
)
|
156 |
+
|
157 |
+
model = AutoModelForCausalLM.from_pretrained(
|
158 |
+
model_id,
|
159 |
+
quantization_config=quantization_config,
|
160 |
+
device_map="auto"
|
161 |
)
|
162 |
|
163 |
+
# Create a prompt that includes the image classification
|
164 |
+
prompt = f"I have an image that contains a {predicted_class}. Please write a detailed description of what this might look like, and explain some interesting facts about {predicted_class}."
|
165 |
+
|
166 |
+
# Format prompt for Phi-3
|
167 |
+
messages = [
|
168 |
+
{"role": "user", "content": prompt}
|
169 |
+
]
|
170 |
+
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
171 |
+
|
172 |
+
result.append("Generating description based on image classification...")
|
173 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
174 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
175 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
176 |
+
|
177 |
+
# Extract the assistant's response
|
178 |
+
if "<assistant>" in generated_text and "</assistant>" in generated_text:
|
179 |
+
response = generated_text.split("<assistant>")[1].split("</assistant>")[0].strip()
|
180 |
+
else:
|
181 |
+
response = generated_text.replace(formatted_prompt, "").strip()
|
182 |
+
|
183 |
+
result.append(f"Generated description: {response}")
|
184 |
+
result.append("Phi-3 with image test successful!")
|
185 |
|
186 |
return "\n".join(result)
|
187 |
except Exception as e:
|
188 |
return f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
189 |
|
190 |
# Create Gradio interface
|
191 |
+
with gr.Blocks(title="StaffManager AI Assistant") as demo:
|
192 |
+
gr.Markdown("# StaffManager AI Assistant")
|
193 |
+
gr.Markdown("Testing open-access models for text and image processing.")
|
194 |
|
195 |
with gr.Tab("System Info"):
|
196 |
with gr.Row():
|
|
|
205 |
outputs=[info_result]
|
206 |
)
|
207 |
|
208 |
+
with gr.Tab("Text Generation"):
|
209 |
+
with gr.Row():
|
210 |
+
with gr.Column():
|
211 |
+
phi3_button = gr.Button("Generate Text with Phi-3 Mini")
|
212 |
+
with gr.Column():
|
213 |
+
phi3_result = gr.Textbox(label="Generated Text", lines=20)
|
214 |
+
|
215 |
+
phi3_button.click(
|
216 |
+
fn=test_phi3_mini,
|
217 |
+
inputs=[],
|
218 |
+
outputs=[phi3_result]
|
219 |
+
)
|
220 |
+
|
221 |
+
with gr.Tab("Image Classification"):
|
222 |
+
with gr.Row():
|
223 |
+
with gr.Column():
|
224 |
+
image_button = gr.Button("Classify Sample Image")
|
225 |
+
with gr.Column():
|
226 |
+
image_result = gr.Textbox(label="Classification Results", lines=20)
|
227 |
+
|
228 |
+
image_button.click(
|
229 |
+
fn=test_image_classification,
|
230 |
+
inputs=[],
|
231 |
+
outputs=[image_result]
|
232 |
+
)
|
233 |
+
|
234 |
+
with gr.Tab("Image Description"):
|
235 |
with gr.Row():
|
236 |
with gr.Column():
|
237 |
+
combined_button = gr.Button("Generate Image Description")
|
238 |
with gr.Column():
|
239 |
+
combined_result = gr.Textbox(label="Description Results", lines=20)
|
240 |
|
241 |
+
combined_button.click(
|
242 |
+
fn=test_phi3_with_image,
|
243 |
inputs=[],
|
244 |
+
outputs=[combined_result]
|
245 |
)
|
246 |
+
|
247 |
+
with gr.Tab("About"):
|
248 |
+
gr.Markdown("""
|
249 |
+
## About StaffManager AI Assistant
|
250 |
+
|
251 |
+
This Space demonstrates AI capabilities for StaffManager using open-access models:
|
252 |
+
|
253 |
+
- **Text Generation**: Uses Microsoft's Phi-3 Mini model
|
254 |
+
- **Image Classification**: Uses Microsoft's ResNet-50 model
|
255 |
+
- **Image Description**: Combines both models to classify and describe images
|
256 |
+
|
257 |
+
These models are completely open-access and don't require any special authentication.
|
258 |
+
""")
|
259 |
|
260 |
# Launch the app
|
261 |
demo.launch()
|