Update app.py
Browse files
app.py
CHANGED
@@ -1,248 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoProcessor, AutoModelForCausalLM, AutoTokenizer
|
4 |
-
import time
|
5 |
-
import os
|
6 |
-
from huggingface_hub import login
|
7 |
-
import requests
|
8 |
-
from PIL import Image
|
9 |
-
from io import BytesIO
|
10 |
-
import base64
|
11 |
-
import traceback
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
# Get token from environment
|
20 |
-
token = os.environ.get("HUGGINGFACE_TOKEN", "")
|
21 |
-
if token:
|
22 |
-
results.append(f"Token found: {token[:5]}...")
|
23 |
-
else:
|
24 |
-
results.append("No token found in environment variables!")
|
25 |
-
return "\n".join(results)
|
26 |
-
|
27 |
-
# Login to Hugging Face
|
28 |
-
try:
|
29 |
-
login(token=token)
|
30 |
-
results.append("Successfully logged in to Hugging Face Hub")
|
31 |
-
except Exception as e:
|
32 |
-
results.append(f"Error logging in: {e}")
|
33 |
-
return "\n".join(results)
|
34 |
-
|
35 |
-
# Use Qwen model
|
36 |
-
model_id = "Qwen/Qwen2-7B-Instruct" # Smaller model for testing
|
37 |
-
|
38 |
-
results.append(f"Loading tokenizer from {model_id}...")
|
39 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
40 |
-
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
42 |
-
|
43 |
-
results.append(f"Loading model from {model_id}...")
|
44 |
-
model = AutoModelForCausalLM.from_pretrained(
|
45 |
-
model_id,
|
46 |
-
torch_dtype=torch.bfloat16,
|
47 |
-
device_map="auto"
|
48 |
-
)
|
49 |
-
|
50 |
-
results.append("Model and tokenizer loaded successfully!")
|
51 |
-
|
52 |
-
# Simple prompt
|
53 |
-
prompt = "Write a short poem about artificial intelligence."
|
54 |
-
|
55 |
-
results.append(f"Generating text for prompt: '{prompt}'")
|
56 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
57 |
-
|
58 |
-
start_time = time.time()
|
59 |
-
outputs = model.generate(**inputs, max_new_tokens=100)
|
60 |
-
end_time = time.time()
|
61 |
-
|
62 |
-
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
63 |
-
|
64 |
-
results.append(f"Generation completed in {end_time - start_time:.2f} seconds")
|
65 |
-
results.append(f"Result: {result}")
|
66 |
-
results.append("TEXT TEST SUCCESSFUL!")
|
67 |
-
|
68 |
-
except Exception as e:
|
69 |
-
results.append(f"Error in text generation test: {e}")
|
70 |
-
results.append(traceback.format_exc())
|
71 |
-
results.append("TEXT TEST FAILED!")
|
72 |
-
|
73 |
-
return "\n".join(results)
|
74 |
-
|
75 |
-
# Function to run the Qwen image-text test
|
76 |
-
def test_image_text_generation():
|
77 |
-
results = []
|
78 |
-
results.append("=== Testing Qwen Image-Text Generation ===")
|
79 |
-
|
80 |
-
try:
|
81 |
-
# Get token from environment
|
82 |
-
token = os.environ.get("HUGGINGFACE_TOKEN", "")
|
83 |
-
if token:
|
84 |
-
results.append(f"Token found: {token[:5]}...")
|
85 |
-
else:
|
86 |
-
results.append("No token found in environment variables!")
|
87 |
-
return "\n".join(results)
|
88 |
-
|
89 |
-
# Login to Hugging Face
|
90 |
-
try:
|
91 |
-
login(token=token)
|
92 |
-
results.append("Successfully logged in to Hugging Face Hub")
|
93 |
-
except Exception as e:
|
94 |
-
results.append(f"Error logging in: {e}")
|
95 |
-
return "\n".join(results)
|
96 |
-
|
97 |
-
# Use the Qwen VL model
|
98 |
-
model_id = "Qwen/Qwen2-VL-7B" # Visual language model
|
99 |
-
|
100 |
-
results.append(f"Loading processor and model from {model_id}...")
|
101 |
-
|
102 |
-
# Load processor and model with the correct classes
|
103 |
-
from transformers import Qwen2VLProcessor, Qwen2VLForConditionalGeneration
|
104 |
-
|
105 |
-
processor = Qwen2VLProcessor.from_pretrained(model_id)
|
106 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
107 |
-
model_id,
|
108 |
-
torch_dtype=torch.bfloat16,
|
109 |
-
device_map="auto"
|
110 |
-
)
|
111 |
-
|
112 |
-
results.append("Model and processor loaded successfully!")
|
113 |
-
|
114 |
-
# Load a test image
|
115 |
-
results.append("Loading test image...")
|
116 |
-
response = requests.get("https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg")
|
117 |
-
img = Image.open(BytesIO(response.content))
|
118 |
-
results.append(f"Image loaded: {img.size}")
|
119 |
-
|
120 |
-
# Simple prompt
|
121 |
-
prompt = "Describe this image in two sentences."
|
122 |
-
|
123 |
-
results.append(f"Creating prompt with image: '{prompt}'")
|
124 |
-
|
125 |
-
# Process inputs
|
126 |
-
inputs = processor(text=prompt, images=img, return_tensors="pt").to(model.device)
|
127 |
-
|
128 |
-
results.append("Generating response...")
|
129 |
-
start_time = time.time()
|
130 |
-
outputs = model.generate(**inputs, max_new_tokens=100)
|
131 |
-
end_time = time.time()
|
132 |
-
|
133 |
-
result = processor.decode(outputs[0], skip_special_tokens=True)
|
134 |
-
|
135 |
-
results.append(f"Generation completed in {end_time - start_time:.2f} seconds")
|
136 |
-
results.append(f"Result: {result}")
|
137 |
-
results.append("IMAGE-TEXT TEST SUCCESSFUL!")
|
138 |
-
|
139 |
-
except Exception as e:
|
140 |
-
results.append(f"Error in image-text generation test: {e}")
|
141 |
-
results.append(traceback.format_exc())
|
142 |
-
results.append("IMAGE-TEXT TEST FAILED!")
|
143 |
-
|
144 |
-
return "\n".join(results)
|
145 |
-
|
146 |
-
# Function to list available Qwen models
|
147 |
-
def list_qwen_models():
|
148 |
-
results = []
|
149 |
-
results.append("=== Listing Available Qwen Models ===")
|
150 |
-
|
151 |
-
try:
|
152 |
-
# Get token from environment
|
153 |
-
token = os.environ.get("HUGGINGFACE_TOKEN", "")
|
154 |
-
if token:
|
155 |
-
results.append(f"Token found: {token[:5]}...")
|
156 |
-
else:
|
157 |
-
results.append("No token found in environment variables!")
|
158 |
-
return "\n".join(results)
|
159 |
-
|
160 |
-
# Login to Hugging Face
|
161 |
-
try:
|
162 |
-
login(token=token)
|
163 |
-
results.append("Successfully logged in to Hugging Face Hub")
|
164 |
-
except Exception as e:
|
165 |
-
results.append(f"Error logging in: {e}")
|
166 |
-
return "\n".join(results)
|
167 |
-
|
168 |
-
# List models from the Qwen organization
|
169 |
-
from huggingface_hub import HfApi
|
170 |
-
api = HfApi(token=token)
|
171 |
-
|
172 |
-
results.append("Fetching models from Qwen organization...")
|
173 |
-
results.append("Available Qwen models:")
|
174 |
-
|
175 |
-
model_count = 0
|
176 |
-
for model in api.list_models(author="Qwen"):
|
177 |
-
results.append(f"- {model.id}")
|
178 |
-
model_count += 1
|
179 |
-
|
180 |
-
results.append(f"Total Qwen models found: {model_count}")
|
181 |
-
results.append("MODEL LISTING SUCCESSFUL!")
|
182 |
-
|
183 |
-
except Exception as e:
|
184 |
-
results.append(f"Error listing models: {e}")
|
185 |
-
results.append(traceback.format_exc())
|
186 |
-
results.append("MODEL LISTING FAILED!")
|
187 |
-
|
188 |
-
return "\n".join(results)
|
189 |
-
|
190 |
-
# Create Gradio interface
|
191 |
-
with gr.Blocks(title="Qwen Model Test") as demo:
|
192 |
-
gr.Markdown("# Qwen Model Test")
|
193 |
-
gr.Markdown("This Space tests the connection to Qwen models.")
|
194 |
-
|
195 |
-
with gr.Tab("List Qwen Models"):
|
196 |
with gr.Row():
|
197 |
with gr.Column():
|
198 |
-
|
199 |
with gr.Column():
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
inputs=[],
|
205 |
-
outputs=[
|
206 |
)
|
207 |
-
|
208 |
-
with gr.Tab("Text Generation Test"):
|
209 |
-
with gr.Row():
|
210 |
-
with gr.Column():
|
211 |
-
text_test_button = gr.Button("Run Text Generation Test")
|
212 |
-
with gr.Column():
|
213 |
-
text_test_result = gr.Textbox(label="Test Results", lines=20)
|
214 |
-
|
215 |
-
text_test_button.click(
|
216 |
-
fn=test_text_generation,
|
217 |
-
inputs=[],
|
218 |
-
outputs=[text_test_result]
|
219 |
-
)
|
220 |
-
|
221 |
-
with gr.Tab("Image-Text Generation Test"):
|
222 |
-
with gr.Row():
|
223 |
-
with gr.Column():
|
224 |
-
image_test_button = gr.Button("Run Image-Text Generation Test")
|
225 |
-
with gr.Column():
|
226 |
-
image_test_result = gr.Textbox(label="Test Results", lines=20)
|
227 |
-
|
228 |
-
image_test_button.click(
|
229 |
-
fn=test_image_text_generation,
|
230 |
-
inputs=[],
|
231 |
-
outputs=[image_test_result]
|
232 |
-
)
|
233 |
-
|
234 |
-
with gr.Tab("About"):
|
235 |
-
gr.Markdown("""
|
236 |
-
## About This Test
|
237 |
-
|
238 |
-
This test checks if your Space can connect to and use Qwen models.
|
239 |
-
|
240 |
-
- The **List Qwen Models** tab shows all models available from Qwen
|
241 |
-
- The **Text Generation Test** uses Qwen2-7B-Instruct for basic text generation
|
242 |
-
- The **Image-Text Generation Test** uses Qwen2-VL-7B for image-text generation
|
243 |
-
|
244 |
-
If both tests pass, your Qwen setup should work correctly.
|
245 |
-
""")
|
246 |
|
247 |
# Launch the app
|
248 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Create a simple interface
|
5 |
+
with gr.Blocks(title="Simple Qwen Test") as demo:
|
6 |
+
gr.Markdown("# Simple Qwen Test")
|
7 |
+
gr.Markdown("This is a minimal test to check if the Space is working.")
|
8 |
|
9 |
+
with gr.Tab("Basic Test"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
with gr.Row():
|
11 |
with gr.Column():
|
12 |
+
test_button = gr.Button("Run Basic Test")
|
13 |
with gr.Column():
|
14 |
+
test_result = gr.Textbox(label="Test Results", lines=10)
|
15 |
+
|
16 |
+
def basic_test():
|
17 |
+
try:
|
18 |
+
# Just print system info
|
19 |
+
import sys
|
20 |
+
import transformers
|
21 |
+
|
22 |
+
result = []
|
23 |
+
result.append(f"Python version: {sys.version}")
|
24 |
+
result.append(f"PyTorch version: {torch.__version__}")
|
25 |
+
result.append(f"Transformers version: {transformers.__version__}")
|
26 |
+
result.append("Basic test successful!")
|
27 |
+
|
28 |
+
return "\n".join(result)
|
29 |
+
except Exception as e:
|
30 |
+
import traceback
|
31 |
+
return f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
32 |
+
|
33 |
+
test_button.click(
|
34 |
+
fn=basic_test,
|
35 |
inputs=[],
|
36 |
+
outputs=[test_result]
|
37 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Launch the app
|
40 |
demo.launch()
|