Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,193 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
import json
|
7 |
+
import time
|
8 |
+
import os
|
9 |
+
import hashlib
|
10 |
|
11 |
+
# Global variables for model and processor
|
12 |
+
model = None
|
13 |
+
processor = None
|
14 |
+
|
15 |
+
# Initialize model and processor
|
16 |
+
def load_model():
|
17 |
+
global model, processor
|
18 |
+
if model is None:
|
19 |
+
try:
|
20 |
+
print("Loading Llama 4 Scout model...")
|
21 |
+
processor = AutoProcessor.from_pretrained("meta-llama/Llama-4-Scout-17B-16E-Instruct")
|
22 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
23 |
+
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
device_map="auto"
|
26 |
+
)
|
27 |
+
print("Model loaded successfully!")
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Error loading model: {e}")
|
30 |
+
raise
|
31 |
+
return model, processor
|
32 |
+
|
33 |
+
# Simple caching mechanism
|
34 |
+
cache = {}
|
35 |
+
|
36 |
+
def compute_image_hash(image):
|
37 |
+
"""Compute a hash for an image to use as cache key"""
|
38 |
+
# Resize to small dimensions to ensure hash is based on content, not size
|
39 |
+
image = image.resize((100, 100), Image.LANCZOS)
|
40 |
+
|
41 |
+
# Convert to bytes
|
42 |
+
img_byte_arr = io.BytesIO()
|
43 |
+
image.save(img_byte_arr, format='PNG')
|
44 |
+
img_byte_arr = img_byte_arr.getvalue()
|
45 |
+
|
46 |
+
# Compute hash
|
47 |
+
return hashlib.md5(img_byte_arr).hexdigest()
|
48 |
+
|
49 |
+
def verify_document(img, doc_type, verification_info):
|
50 |
+
"""Verify a document using Llama 4 Scout"""
|
51 |
+
if img is None:
|
52 |
+
return "Please upload an image"
|
53 |
+
|
54 |
+
# Compute image hash for caching
|
55 |
+
image_hash = compute_image_hash(img)
|
56 |
+
cache_key = f"verify_{image_hash}_{doc_type}"
|
57 |
+
|
58 |
+
# Check cache
|
59 |
+
if cache_key in cache:
|
60 |
+
return f"[CACHED] {cache[cache_key]}"
|
61 |
+
|
62 |
+
try:
|
63 |
+
# Load model
|
64 |
+
model, processor = load_model()
|
65 |
+
|
66 |
+
# Create prompt
|
67 |
+
prompt = f"""This is a {doc_type} document.
|
68 |
+
Verify if it's authentic and extract the following information: {verification_info}
|
69 |
+
Provide your analysis in a structured format."""
|
70 |
+
|
71 |
+
# Process with model
|
72 |
+
inputs = processor(text=prompt, images=img, return_tensors="pt").to(model.device)
|
73 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
74 |
+
result = processor.decode(outputs[0], skip_special_tokens=True)
|
75 |
+
|
76 |
+
# Save to cache
|
77 |
+
cache[cache_key] = result
|
78 |
+
|
79 |
+
return result
|
80 |
+
except Exception as e:
|
81 |
+
return f"Error: {str(e)}"
|
82 |
+
|
83 |
+
def check_workplace(img, industry):
|
84 |
+
"""Check workplace compliance using Llama 4 Scout"""
|
85 |
+
if img is None:
|
86 |
+
return "Please upload an image"
|
87 |
+
|
88 |
+
# Compute image hash for caching
|
89 |
+
image_hash = compute_image_hash(img)
|
90 |
+
cache_key = f"workplace_{image_hash}_{industry}"
|
91 |
+
|
92 |
+
# Check cache
|
93 |
+
if cache_key in cache:
|
94 |
+
return f"[CACHED] {cache[cache_key]}"
|
95 |
|
96 |
+
try:
|
97 |
+
# Load model
|
98 |
+
model, processor = load_model()
|
99 |
+
|
100 |
+
# Create prompt
|
101 |
+
prompt = f"""This is a workplace in the {industry} industry.
|
102 |
+
Identify any safety or compliance issues visible in this image.
|
103 |
+
Focus on:
|
104 |
+
1. Safety hazards
|
105 |
+
2. Required signage
|
106 |
+
3. Proper equipment usage
|
107 |
+
4. Workspace organization
|
108 |
+
5. Compliance with regulations
|
109 |
+
|
110 |
+
Format your response as a detailed assessment with:
|
111 |
+
- Issues found (if any)
|
112 |
+
- Severity level for each issue
|
113 |
+
- Recommendations for correction"""
|
114 |
+
|
115 |
+
# Process with model
|
116 |
+
inputs = processor(text=prompt, images=img, return_tensors="pt").to(model.device)
|
117 |
+
outputs = model.generate(**inputs, max_new_tokens=800)
|
118 |
+
result = processor.decode(outputs[0], skip_special_tokens=True)
|
119 |
+
|
120 |
+
# Save to cache
|
121 |
+
cache[cache_key] = result
|
122 |
+
|
123 |
+
return result
|
124 |
+
except Exception as e:
|
125 |
+
return f"Error: {str(e)}"
|
126 |
+
|
127 |
+
# Create Gradio interface
|
128 |
+
with gr.Blocks(title="StaffManager AI Assistant") as demo:
|
129 |
+
gr.Markdown("# StaffManager AI Assistant")
|
130 |
+
gr.Markdown("This Space provides AI capabilities for StaffManager using Llama 4 Scout.")
|
131 |
+
|
132 |
+
with gr.Tab("Document Verification"):
|
133 |
+
with gr.Row():
|
134 |
+
with gr.Column():
|
135 |
+
doc_image = gr.Image(type="pil", label="Upload Document")
|
136 |
+
doc_type = gr.Dropdown(
|
137 |
+
["identification", "tax", "employment", "policy"],
|
138 |
+
label="Document Type",
|
139 |
+
value="identification"
|
140 |
+
)
|
141 |
+
verification_info = gr.Textbox(
|
142 |
+
label="Verification Data (JSON)",
|
143 |
+
value='{"name": "John Doe", "id_number": "ABC123456"}'
|
144 |
+
)
|
145 |
+
verify_button = gr.Button("Verify Document")
|
146 |
+
with gr.Column():
|
147 |
+
doc_result = gr.Textbox(label="Verification Result", lines=10)
|
148 |
+
|
149 |
+
verify_button.click(
|
150 |
+
fn=verify_document,
|
151 |
+
inputs=[doc_image, doc_type, verification_info],
|
152 |
+
outputs=[doc_result]
|
153 |
+
)
|
154 |
+
|
155 |
+
with gr.Tab("Workplace Compliance"):
|
156 |
+
with gr.Row():
|
157 |
+
with gr.Column():
|
158 |
+
workplace_image = gr.Image(type="pil", label="Upload Workplace Image")
|
159 |
+
industry_type = gr.Dropdown(
|
160 |
+
["retail", "restaurant", "healthcare", "manufacturing"],
|
161 |
+
label="Industry",
|
162 |
+
value="retail"
|
163 |
+
)
|
164 |
+
check_button = gr.Button("Check Compliance")
|
165 |
+
with gr.Column():
|
166 |
+
compliance_result = gr.Textbox(label="Compliance Assessment", lines=10)
|
167 |
+
|
168 |
+
check_button.click(
|
169 |
+
fn=check_workplace,
|
170 |
+
inputs=[workplace_image, industry_type],
|
171 |
+
outputs=[compliance_result]
|
172 |
+
)
|
173 |
+
|
174 |
+
with gr.Tab("About"):
|
175 |
+
gr.Markdown("""
|
176 |
+
## About StaffManager AI Assistant
|
177 |
+
|
178 |
+
This Space uses the Llama 4 Scout model to provide AI capabilities for StaffManager:
|
179 |
+
|
180 |
+
- **Document Verification**: Verify and extract information from documents
|
181 |
+
- **Workplace Compliance**: Identify safety and compliance issues in workplace images
|
182 |
+
|
183 |
+
The model is loaded on demand and results are cached for better performance.
|
184 |
+
|
185 |
+
### Model Information
|
186 |
+
|
187 |
+
- Model: meta-llama/Llama-4-Scout-17B-16E-Instruct
|
188 |
+
- Type: Multimodal (image + text)
|
189 |
+
- Size: 17B parameters
|
190 |
+
""")
|
191 |
+
|
192 |
+
# Launch the app
|
193 |
demo.launch()
|