Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,788 Bytes
5b8270b d9daf8e 5b8270b 63fe863 5b8270b d9daf8e 5b8270b d9daf8e 5b8270b 63fe863 5b8270b d9daf8e b971c5b d9daf8e b971c5b d9daf8e b971c5b d9daf8e 2754ff7 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e 8417867 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e 8417867 d9daf8e b090ad7 8417867 5b8270b 8417867 d9daf8e 5b8270b d9daf8e 8417867 be668a4 d9daf8e de3f8ed d9daf8e de3f8ed d9daf8e 5b8270b be668a4 b214a4f 78f9ab5 1d353cd d9daf8e 5b8270b d9daf8e 5b8270b ca7eb57 e0e61bb ca7eb57 f7ffd06 5b8270b d9daf8e 7ac50ed d9daf8e 5b8270b f7ffd06 d9daf8e 8417867 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 097eb9b d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e de3f8ed f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e f7ffd06 d9daf8e 5b8270b d9daf8e 8417867 d9daf8e 8417867 d9daf8e 5b8270b 8417867 d9daf8e 5b8270b d9daf8e e982174 d9daf8e e982174 5b8270b d9daf8e 5b8270b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
from safetensors.torch import load_file
import requests
import re
# Load Kontext model
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
# Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs)
with open("flux_loras.json", "r") as file:
data = json.load(file)
flux_loras_raw = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"trigger_word": item.get("trigger_word", ""),
"trigger_position": item.get("trigger_position", "prepend"),
"weights": item.get("weights", "pytorch_lora_weights.safetensors"),
}
for item in data
]
print(f"Loaded {len(flux_loras_raw)} LoRAs from JSON")
# Global variables for LoRA management
current_lora = None
lora_cache = {}
def load_lora_weights(repo_id, weights_filename):
"""Load LoRA weights from HuggingFace"""
try:
if repo_id not in lora_cache:
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
lora_cache[repo_id] = lora_path
return lora_cache[repo_id]
except Exception as e:
print(f"Error loading LoRA from {repo_id}: {e}")
return None
def update_selection(selected_state: gr.SelectData, flux_loras):
"""Update UI when a LoRA is selected"""
if selected_state.index >= len(flux_loras):
return "### π No style selected yet", gr.update(), None
lora_repo = flux_loras[selected_state.index]["repo"]
trigger_word = flux_loras[selected_state.index]["trigger_word"]
updated_text = f"### β
Selected Style: {flux_loras[selected_state.index]['title']}"
new_placeholder = f"Optional: Add extra details, e.g., 'a man with glasses' or 'woman with long hair'"
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index
def get_huggingface_lora(link):
"""Download LoRA from HuggingFace link"""
split_link = link.split("/")
if len(split_link) == 2:
try:
model_card = ModelCard.load(link)
trigger_word = model_card.data.get("instance_prompt", "")
fs = HfFileSystem()
list_of_files = fs.ls(link, detail=False)
safetensors_file = None
for file in list_of_files:
if file.endswith(".safetensors") and "lora" in file.lower():
safetensors_file = file.split("/")[-1]
break
if not safetensors_file:
safetensors_file = "pytorch_lora_weights.safetensors"
return split_link[1], safetensors_file, trigger_word
except Exception as e:
raise Exception(f"Error loading LoRA: {e}")
else:
raise Exception("Invalid HuggingFace repository format")
def load_custom_lora(link):
"""Load custom LoRA from user input"""
if not link:
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### π Please click on a style from the gallery below", None
try:
repo_name, weights_file, trigger_word = get_huggingface_lora(link)
card = f'''
<div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;">
<span><strong>Custom style loaded:</strong></span>
<div style="margin-top: 8px;">
<h4>{repo_name}</h4>
<small>{"Using trigger word: <code><b>"+trigger_word+"</b></code>" if trigger_word else "No trigger word found"}</small>
</div>
</div>
'''
custom_lora_data = {
"repo": link,
"weights": weights_file,
"trigger_word": trigger_word
}
return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"β
Custom Style: {repo_name}", None
except Exception as e:
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### π Please click on a style from the gallery below", None
def remove_custom_lora():
"""Remove custom LoRA"""
return "", gr.update(visible=False), gr.update(visible=False), None, None
def classify_gallery(flux_loras):
"""Sort gallery by likes"""
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
"""Wrapper function to handle state serialization"""
return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress)
@spaces.GPU
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
"""Generate image with selected LoRA"""
global current_lora, pipe
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Determine which LoRA to use
lora_to_use = None
if custom_lora:
lora_to_use = custom_lora
elif selected_index is not None and flux_loras and selected_index < len(flux_loras):
lora_to_use = flux_loras[selected_index]
print(f"Loaded {len(flux_loras)} LoRAs from JSON")
# Load LoRA if needed
if lora_to_use and lora_to_use != current_lora:
try:
# Unload current LoRA
if current_lora:
pipe.unload_lora_weights()
# Load new LoRA
lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
if lora_path:
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
print(f"loaded: {lora_path} with scale {lora_scale}")
current_lora = lora_to_use
except Exception as e:
print(f"Error loading LoRA: {e}")
# Continue without LoRA
else:
print(f"using already loaded lora: {lora_to_use}")
input_image = input_image.convert("RGB")
# Add trigger word to prompt
trigger_word = lora_to_use["trigger_word"]
if trigger_word == ", How2Draw":
prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
elif trigger_word == ", video game screenshot in the style of THSMS":
prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features"
else:
prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}."
try:
image = pipe(
image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed, gr.update(visible=True)
except Exception as e:
print(f"Error during inference: {e}")
return None, seed, gr.update(visible=False)
# CSS styling
css = """
#main_app {
display: flex;
gap: 20px;
}
#box_column {
min-width: 400px;
}
#selected_lora {
color: #2563eb;
font-weight: bold;
}
#prompt {
flex-grow: 1;
}
#run_button {
background: linear-gradient(45deg, #2563eb, #3b82f6);
color: white;
border: none;
padding: 8px 16px;
border-radius: 6px;
font-weight: bold;
}
.custom_lora_card {
background: #f8fafc;
border: 1px solid #e2e8f0;
border-radius: 8px;
padding: 12px;
margin: 8px 0;
}
#gallery{
overflow: scroll !important
}
.app-intro {
background: linear-gradient(135deg, #f6f9fc 0%, #e9f3ff 100%);
border-radius: 12px;
padding: 20px;
margin-bottom: 20px;
border: 1px solid #e1e8f0;
}
.step-card {
background: white;
border: 1px solid #e2e8f0;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.tips-box {
background: #fff8dc;
border: 1px solid #ffd700;
border-radius: 8px;
padding: 12px;
margin-top: 15px;
}
"""
# Create Gradio interface
with gr.Blocks(css=css, title="aistyleportrait - AI Portrait Style Transfer Master") as demo:
gr_flux_loras = gr.State(value=flux_loras_raw)
# App title and introduction
with gr.Column():
gr.HTML(
"""
<div style="text-align: center; margin-bottom: 30px;">
<h1 style="font-size: 2.5em; margin-bottom: 10px;">
π¨ AI Portrait Style Transfer Master
</h1>
<p style="font-size: 1.2em; color: #666;">
Transform your photos into various artistic styles while preserving facial features
</p>
</div>
"""
)
# Application introduction card
with gr.Row():
gr.HTML(
"""
<div class="app-intro">
<h2 style="margin-top: 0;">β¨ Welcome to AI Portrait Style Transfer</h2>
<p style="line-height: 1.8;">
This is a powerful AI tool that can transform your portrait photos into various unique artistic styles.
Whether it's cartoon, oil painting, sketch, or other creative styles, it preserves your facial features
while giving your photos a completely new artistic expression.
</p>
<div style="margin-top: 15px;">
<strong>π― Key Features:</strong>
<ul style="margin-top: 8px; line-height: 1.8;">
<li>Preserves original facial features, ensuring person remains recognizable</li>
<li>Multiple preset artistic styles to choose from</li>
<li>Supports custom descriptions for fine-tuned effects</li>
<li>One-click generation, simple and fast operation</li>
</ul>
</div>
</div>
"""
)
selected_state = gr.State(value=None)
custom_loaded_lora = gr.State(value=None)
# How to use
with gr.Accordion("π How to Use (Click to expand)", open=False):
gr.HTML(
"""
<div style="padding: 10px;">
<h3>π Quick Start:</h3>
<div class="step-card">
<h4>Step 1: Upload Your Photo</h4>
<p>Click the upload area on the left and select a clear portrait photo. Front-facing photos work best.</p>
</div>
<div class="step-card">
<h4>Step 2: Choose an Art Style</h4>
<p>Browse the style gallery and click on the artistic style you like. Each style has a preview image for reference.</p>
</div>
<div class="step-card">
<h4>Step 3: Add Description (Optional)</h4>
<p>If needed, you can add extra descriptions in the text box, such as "wearing glasses", "smiling", etc.</p>
</div>
<div class="step-card">
<h4>Step 4: Generate Image</h4>
<p>Click the "Generate" button and wait for AI to process your photo. It usually takes 10-30 seconds.</p>
</div>
<div class="tips-box">
<h4>π‘ Pro Tips:</h4>
<ul style="margin-top: 8px; line-height: 1.8;">
<li><strong>Photo Requirements:</strong> Upload clear front-facing portrait photos with good lighting and unobstructed face</li>
<li><strong>Style Intensity:</strong> Adjust "LoRA Scale" in Advanced Settings to control the strength of style transfer</li>
<li><strong>Multiple Attempts:</strong> Enable "Randomize seed" to generate different variations</li>
<li><strong>Save Results:</strong> Right-click on the generated image to save it locally</li>
</ul>
</div>
</div>
"""
)
with gr.Row(elem_id="main_app"):
with gr.Column(scale=4, elem_id="box_column"):
with gr.Group(elem_id="gallery_box"):
input_image = gr.Image(
label="πΈ Upload Your Portrait Photo",
type="pil",
height=300,
elem_classes=["upload-area"]
)
gr.Markdown("### π¨ Choose an Art Style")
gallery = gr.Gallery(
label="Style Gallery (Click to select)",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False,
height=400
)
custom_model = gr.Textbox(
label="Or enter a custom HuggingFace FLUX LoRA",
placeholder="e.g., username/lora-name",
visible=False
)
custom_model_card = gr.HTML(visible=False)
custom_model_button = gr.Button("Remove custom style", visible=False)
with gr.Column(scale=5):
prompt_title = gr.Markdown(
value="### π Please click on a style from the gallery on the left",
visible=True,
elem_id="selected_lora",
)
with gr.Row():
prompt = gr.Textbox(
label="Additional Description (Optional)",
show_label=True,
lines=1,
max_lines=1,
placeholder="Optional: Add extra details, e.g., 'a man with glasses' or 'woman with long hair'",
elem_id="prompt"
)
run_button = gr.Button("π¨ Generate", elem_id="run_button", variant="primary")
result = gr.Image(label="Generated Result", interactive=False)
reuse_button = gr.Button("β»οΈ Use this image as new input", visible=False)
with gr.Accordion("βοΈ Advanced Settings", open=False):
lora_scale = gr.Slider(
label="Style Intensity",
minimum=0,
maximum=2,
step=0.1,
value=1.5,
info="Controls the strength of the artistic style (recommended: 1.0-1.5)"
)
seed = gr.Slider(
label="Random Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
info="Same seed will generate the same result"
)
randomize_seed = gr.Checkbox(
label="Randomize seed (generate different effects each time)",
value=True
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
info="Controls how closely the image follows the prompt"
)
# Event handlers
custom_model.input(
fn=load_custom_lora,
inputs=[custom_model],
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state],
)
custom_model_button.click(
fn=remove_custom_lora,
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state]
)
gallery.select(
fn=update_selection,
inputs=[gr_flux_loras],
outputs=[prompt_title, prompt, selected_state],
show_progress=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer_with_lora_wrapper,
inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
outputs=[result, seed, reuse_button]
)
reuse_button.click(
fn=lambda image: image,
inputs=[result],
outputs=[input_image]
)
# Initialize gallery
demo.load(
fn=classify_gallery,
inputs=[gr_flux_loras],
outputs=[gallery, gr_flux_loras]
)
demo.queue(default_concurrency_limit=None)
demo.launch() |