import gradio as gr import numpy as np import spaces import torch import random import json import os from PIL import Image from diffusers import FluxKontextPipeline from diffusers.utils import load_image from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard from safetensors.torch import load_file import requests import re # Load Kontext model MAX_SEED = np.iinfo(np.int32).max pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") # Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs) with open("flux_loras.json", "r") as file: data = json.load(file) flux_loras_raw = [ { "image": item["image"], "title": item["title"], "repo": item["repo"], "trigger_word": item.get("trigger_word", ""), "trigger_position": item.get("trigger_position", "prepend"), "weights": item.get("weights", "pytorch_lora_weights.safetensors"), } for item in data ] print(f"Loaded {len(flux_loras_raw)} LoRAs from JSON") # Global variables for LoRA management current_lora = None lora_cache = {} def load_lora_weights(repo_id, weights_filename): """Load LoRA weights from HuggingFace""" try: if repo_id not in lora_cache: lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename) lora_cache[repo_id] = lora_path return lora_cache[repo_id] except Exception as e: print(f"Error loading LoRA from {repo_id}: {e}") return None def update_selection(selected_state: gr.SelectData, flux_loras): """Update UI when a LoRA is selected""" if selected_state.index >= len(flux_loras): return "### 📌 No style selected yet", gr.update(), None lora_repo = flux_loras[selected_state.index]["repo"] trigger_word = flux_loras[selected_state.index]["trigger_word"] updated_text = f"### ✅ Selected Style: {flux_loras[selected_state.index]['title']}" new_placeholder = f"Optional: Add extra details, e.g., 'a man with glasses' or 'woman with long hair'" return updated_text, gr.update(placeholder=new_placeholder), selected_state.index def get_huggingface_lora(link): """Download LoRA from HuggingFace link""" split_link = link.split("/") if len(split_link) == 2: try: model_card = ModelCard.load(link) trigger_word = model_card.data.get("instance_prompt", "") fs = HfFileSystem() list_of_files = fs.ls(link, detail=False) safetensors_file = None for file in list_of_files: if file.endswith(".safetensors") and "lora" in file.lower(): safetensors_file = file.split("/")[-1] break if not safetensors_file: safetensors_file = "pytorch_lora_weights.safetensors" return split_link[1], safetensors_file, trigger_word except Exception as e: raise Exception(f"Error loading LoRA: {e}") else: raise Exception("Invalid HuggingFace repository format") def load_custom_lora(link): """Load custom LoRA from user input""" if not link: return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### 📌 Please click on a style from the gallery below", None try: repo_name, weights_file, trigger_word = get_huggingface_lora(link) card = f'''
Custom style loaded:

{repo_name}

{"Using trigger word: "+trigger_word+"" if trigger_word else "No trigger word found"}
''' custom_lora_data = { "repo": link, "weights": weights_file, "trigger_word": trigger_word } return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"✅ Custom Style: {repo_name}", None except Exception as e: return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### 📌 Please click on a style from the gallery below", None def remove_custom_lora(): """Remove custom LoRA""" return "", gr.update(visible=False), gr.update(visible=False), None, None def classify_gallery(flux_loras): """Sort gallery by likes""" sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True) return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)): """Wrapper function to handle state serialization""" return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress) @spaces.GPU def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)): """Generate image with selected LoRA""" global current_lora, pipe if randomize_seed: seed = random.randint(0, MAX_SEED) # Determine which LoRA to use lora_to_use = None if custom_lora: lora_to_use = custom_lora elif selected_index is not None and flux_loras and selected_index < len(flux_loras): lora_to_use = flux_loras[selected_index] print(f"Loaded {len(flux_loras)} LoRAs from JSON") # Load LoRA if needed if lora_to_use and lora_to_use != current_lora: try: # Unload current LoRA if current_lora: pipe.unload_lora_weights() # Load new LoRA lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"]) if lora_path: pipe.load_lora_weights(lora_path, adapter_name="selected_lora") pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale]) print(f"loaded: {lora_path} with scale {lora_scale}") current_lora = lora_to_use except Exception as e: print(f"Error loading LoRA: {e}") # Continue without LoRA else: print(f"using already loaded lora: {lora_to_use}") input_image = input_image.convert("RGB") # Add trigger word to prompt trigger_word = lora_to_use["trigger_word"] if trigger_word == ", How2Draw": prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features" elif trigger_word == ", video game screenshot in the style of THSMS": prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features" else: prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}." try: image = pipe( image=input_image, prompt=prompt, guidance_scale=guidance_scale, generator=torch.Generator().manual_seed(seed), ).images[0] return image, seed, gr.update(visible=True) except Exception as e: print(f"Error during inference: {e}") return None, seed, gr.update(visible=False) # CSS styling css = """ #main_app { display: flex; gap: 20px; } #box_column { min-width: 400px; } #selected_lora { color: #2563eb; font-weight: bold; } #prompt { flex-grow: 1; } #run_button { background: linear-gradient(45deg, #2563eb, #3b82f6); color: white; border: none; padding: 8px 16px; border-radius: 6px; font-weight: bold; } .custom_lora_card { background: #f8fafc; border: 1px solid #e2e8f0; border-radius: 8px; padding: 12px; margin: 8px 0; } #gallery{ overflow: scroll !important } .app-intro { background: linear-gradient(135deg, #f6f9fc 0%, #e9f3ff 100%); border-radius: 12px; padding: 20px; margin-bottom: 20px; border: 1px solid #e1e8f0; } .step-card { background: white; border: 1px solid #e2e8f0; border-radius: 8px; padding: 15px; margin: 10px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.05); } .tips-box { background: #fff8dc; border: 1px solid #ffd700; border-radius: 8px; padding: 12px; margin-top: 15px; } """ # Create Gradio interface with gr.Blocks(css=css, title="aistyleportrait - AI Portrait Style Transfer Master") as demo: gr_flux_loras = gr.State(value=flux_loras_raw) # App title and introduction with gr.Column(): gr.HTML( """

🎨 AI Portrait Style Transfer Master

Transform your photos into various artistic styles while preserving facial features

""" ) # Application introduction card with gr.Row(): gr.HTML( """

✨ Welcome to AI Portrait Style Transfer

This is a powerful AI tool that can transform your portrait photos into various unique artistic styles. Whether it's cartoon, oil painting, sketch, or other creative styles, it preserves your facial features while giving your photos a completely new artistic expression.

🎯 Key Features:
""" ) selected_state = gr.State(value=None) custom_loaded_lora = gr.State(value=None) # How to use with gr.Accordion("📖 How to Use (Click to expand)", open=False): gr.HTML( """

🚀 Quick Start:

Step 1: Upload Your Photo

Click the upload area on the left and select a clear portrait photo. Front-facing photos work best.

Step 2: Choose an Art Style

Browse the style gallery and click on the artistic style you like. Each style has a preview image for reference.

Step 3: Add Description (Optional)

If needed, you can add extra descriptions in the text box, such as "wearing glasses", "smiling", etc.

Step 4: Generate Image

Click the "Generate" button and wait for AI to process your photo. It usually takes 10-30 seconds.

💡 Pro Tips:

""" ) with gr.Row(elem_id="main_app"): with gr.Column(scale=4, elem_id="box_column"): with gr.Group(elem_id="gallery_box"): input_image = gr.Image( label="📸 Upload Your Portrait Photo", type="pil", height=300, elem_classes=["upload-area"] ) gr.Markdown("### 🎨 Choose an Art Style") gallery = gr.Gallery( label="Style Gallery (Click to select)", allow_preview=False, columns=3, elem_id="gallery", show_share_button=False, height=400 ) custom_model = gr.Textbox( label="Or enter a custom HuggingFace FLUX LoRA", placeholder="e.g., username/lora-name", visible=False ) custom_model_card = gr.HTML(visible=False) custom_model_button = gr.Button("Remove custom style", visible=False) with gr.Column(scale=5): prompt_title = gr.Markdown( value="### 📌 Please click on a style from the gallery on the left", visible=True, elem_id="selected_lora", ) with gr.Row(): prompt = gr.Textbox( label="Additional Description (Optional)", show_label=True, lines=1, max_lines=1, placeholder="Optional: Add extra details, e.g., 'a man with glasses' or 'woman with long hair'", elem_id="prompt" ) run_button = gr.Button("🎨 Generate", elem_id="run_button", variant="primary") result = gr.Image(label="Generated Result", interactive=False) reuse_button = gr.Button("♻️ Use this image as new input", visible=False) with gr.Accordion("⚙️ Advanced Settings", open=False): lora_scale = gr.Slider( label="Style Intensity", minimum=0, maximum=2, step=0.1, value=1.5, info="Controls the strength of the artistic style (recommended: 1.0-1.5)" ) seed = gr.Slider( label="Random Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, info="Same seed will generate the same result" ) randomize_seed = gr.Checkbox( label="Randomize seed (generate different effects each time)", value=True ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=2.5, info="Controls how closely the image follows the prompt" ) # Event handlers custom_model.input( fn=load_custom_lora, inputs=[custom_model], outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state], ) custom_model_button.click( fn=remove_custom_lora, outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state] ) gallery.select( fn=update_selection, inputs=[gr_flux_loras], outputs=[prompt_title, prompt, selected_state], show_progress=False ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer_with_lora_wrapper, inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras], outputs=[result, seed, reuse_button] ) reuse_button.click( fn=lambda image: image, inputs=[result], outputs=[input_image] ) # Initialize gallery demo.load( fn=classify_gallery, inputs=[gr_flux_loras], outputs=[gallery, gr_flux_loras] ) demo.queue(default_concurrency_limit=None) demo.launch()