Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import ftfy
|
6 |
+
import language_tool_python
|
7 |
+
import re
|
8 |
+
from sentence_transformers import SentenceTransformer, util
|
9 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
10 |
+
|
11 |
+
# Load fine-tuned GPT-2 model
|
12 |
+
model_path = "/content/drive/MyDrive/gpt2_tinystories_finetuned" # Update if needed
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
15 |
+
|
16 |
+
# Create a text-generation pipeline
|
17 |
+
story_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
18 |
+
|
19 |
+
# Load NLP tools
|
20 |
+
tool = language_tool_python.LanguageTool('en-UK')
|
21 |
+
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
22 |
+
|
23 |
+
def refine_story(text):
|
24 |
+
"""Refines the generated story by fixing encoding, grammar, and redundancy."""
|
25 |
+
text = ftfy.fix_text(text) # Fix encoding
|
26 |
+
matches = tool.check(text) # Check grammar
|
27 |
+
text = language_tool_python.utils.correct(text, matches) # Apply fixes
|
28 |
+
|
29 |
+
# Remove redundant words/phrases
|
30 |
+
text = re.sub(r'(\b\w+\b) \1', r'\1', text) # Remove duplicate words
|
31 |
+
text = re.sub(r'(\b\w+ and \w+\b)(,? \1)+', r'\1', text) # Remove phrase repetitions
|
32 |
+
|
33 |
+
return text
|
34 |
+
|
35 |
+
def detect_inconsistencies(text):
|
36 |
+
"""Checks for logical inconsistencies by comparing sentence similarities."""
|
37 |
+
sentences = text.split(". ")
|
38 |
+
inconsistencies = []
|
39 |
+
|
40 |
+
# Compare each sentence with the next one
|
41 |
+
for i in range(len(sentences) - 1):
|
42 |
+
similarity_score = util.pytorch_cos_sim(sentence_model.encode(sentences[i]), sentence_model.encode(sentences[i+1]))
|
43 |
+
|
44 |
+
if similarity_score.item() < 0.3: # If similarity is low, flag as inconsistent
|
45 |
+
inconsistencies.append(f"⚠️ **Possible inconsistency detected:**\n➡ {sentences[i]} \n➡ {sentences[i+1]}")
|
46 |
+
|
47 |
+
return "\n\n".join(inconsistencies) if inconsistencies else "✅ No major inconsistencies detected."
|
48 |
+
|
49 |
+
def story_pipeline(prompt):
|
50 |
+
"""Generates a story, refines it, and checks inconsistencies."""
|
51 |
+
# Generate the story
|
52 |
+
generated = story_generator(prompt, max_length=200, do_sample=True, temperature=1.0, top_p=0.9, top_k=50)
|
53 |
+
raw_story = generated[0]['generated_text']
|
54 |
+
|
55 |
+
# Refine the generated story
|
56 |
+
refined_story = refine_story(raw_story)
|
57 |
+
|
58 |
+
# Detect logical inconsistencies
|
59 |
+
inconsistencies = detect_inconsistencies(refined_story)
|
60 |
+
|
61 |
+
return raw_story, refined_story, inconsistencies
|
62 |
+
|
63 |
+
# ✅ Gradio Interface with Proper Logical Inconsistency Detection
|
64 |
+
interface = gr.Interface(
|
65 |
+
fn=story_pipeline,
|
66 |
+
inputs=gr.Textbox(label="Enter Story Prompt", placeholder="Once upon a time..."),
|
67 |
+
outputs=[
|
68 |
+
gr.Textbox(label="📖 Generated Story", interactive=True), # Interactive textbox
|
69 |
+
gr.Textbox(label="✅ Refined Story", interactive=True), # Refined output
|
70 |
+
gr.Textbox(label="⚠️ Logical Inconsistencies", interactive=False), # Shows inconsistencies correctly
|
71 |
+
],
|
72 |
+
title="📖 FableWeaver AI",
|
73 |
+
description="Generates AI-powered TinyStories using GPT-2 fine-tuned on TinyStories. Automatically refines the story and detects logical inconsistencies."
|
74 |
+
)
|
75 |
+
|
76 |
+
# Launch Gradio app
|
77 |
+
interface.launch(share="True")
|