Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- KNN.pkl +3 -0
- app.py +25 -6
- random_forests.pkl +3 -0
KNN.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79d2a6ccf9a736551776e3c7539aa31a68bf01d1cdf3dcfd90f0087f43f7eed9
|
3 |
+
size 1171
|
app.py
CHANGED
@@ -13,6 +13,8 @@ linear_model = joblib.load("linear_model.pkl")
|
|
13 |
poly_model = joblib.load("poly_model.pkl")
|
14 |
poly_features = joblib.load("poly_features.pkl")
|
15 |
scaler = joblib.load("scaler.pkl") # Load the saved StandardScaler
|
|
|
|
|
16 |
|
17 |
# Function to load and preview CSV data
|
18 |
def load_data(file):
|
@@ -33,7 +35,7 @@ def plot_population_trend(file, model_choice):
|
|
33 |
plt.grid()
|
34 |
|
35 |
plt.figure(figsize=(8,5))
|
36 |
-
plt.scatter(df["Year"], df["
|
37 |
|
38 |
X = df["Year"].values.reshape(-1, 1) # Extract Year column
|
39 |
|
@@ -41,11 +43,25 @@ def plot_population_trend(file, model_choice):
|
|
41 |
X_scaled = scaler.transform(X)
|
42 |
predictions = linear_model.predict(X_scaled)
|
43 |
plt.plot(df["Year"], predictions, label="Linear Regression", color="red", linestyle="dashed")
|
44 |
-
|
45 |
X_scaled = scaler.transform(X) # Apply scaling
|
46 |
X_poly = poly_features.transform(X_scaled) # Transform for Polynomial Regression
|
47 |
predictions = poly_model.predict(X_poly)
|
48 |
plt.plot(df["Year"], predictions, label="Polynomial Regression", color="green")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
plt.xlabel("Year")
|
51 |
plt.ylabel("Population")
|
@@ -76,11 +92,14 @@ def predict_population(file, model_choice):
|
|
76 |
# Do NOT scale X for Linear Regression
|
77 |
X_scaled = scaler.transform(X)
|
78 |
predictions = linear_model.predict(X_scaled)
|
79 |
-
|
80 |
X_scaled = scaler.transform(X) # Apply the same scaling as training
|
81 |
X_poly = poly_features.transform(X_scaled) # Transform for Polynomial Regression
|
82 |
predictions = poly_model.predict(X_poly)
|
83 |
-
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
df["Predicted Population"] = predictions # Append predictions to DataFrame
|
@@ -116,7 +135,7 @@ interface = gr.Interface(
|
|
116 |
fn=gradio_interface, # Use the single wrapper function
|
117 |
inputs=[
|
118 |
gr.File(label="Upload CSV File"),
|
119 |
-
gr.Radio(["Linear Regression", "Polynomial Regression"], label="Choose Model")
|
120 |
],
|
121 |
outputs=[
|
122 |
gr.Dataframe(label="Preview Data"),
|
@@ -125,7 +144,7 @@ interface = gr.Interface(
|
|
125 |
gr.Textbox(label="Model Performance")
|
126 |
],
|
127 |
title="Population Prediction Tool",
|
128 |
-
description="Upload a CSV file with Year and Population data. Choose a model (Linear or Polynomial Regression) to predict future population trends."
|
129 |
)
|
130 |
|
131 |
# Launch the Gradio App
|
|
|
13 |
poly_model = joblib.load("poly_model.pkl")
|
14 |
poly_features = joblib.load("poly_features.pkl")
|
15 |
scaler = joblib.load("scaler.pkl") # Load the saved StandardScaler
|
16 |
+
knn_model = joblib.load("KNN.pkl")
|
17 |
+
randforests_model = joblib.load("random_forests.pkl")
|
18 |
|
19 |
# Function to load and preview CSV data
|
20 |
def load_data(file):
|
|
|
35 |
plt.grid()
|
36 |
|
37 |
plt.figure(figsize=(8,5))
|
38 |
+
plt.scatter(df["Year"], df["Population"], label="Actual Population", color="blue", alpha=0.6)
|
39 |
|
40 |
X = df["Year"].values.reshape(-1, 1) # Extract Year column
|
41 |
|
|
|
43 |
X_scaled = scaler.transform(X)
|
44 |
predictions = linear_model.predict(X_scaled)
|
45 |
plt.plot(df["Year"], predictions, label="Linear Regression", color="red", linestyle="dashed")
|
46 |
+
elif model_choice == "Polynomial Regression": # Polynomial Regression
|
47 |
X_scaled = scaler.transform(X) # Apply scaling
|
48 |
X_poly = poly_features.transform(X_scaled) # Transform for Polynomial Regression
|
49 |
predictions = poly_model.predict(X_poly)
|
50 |
plt.plot(df["Year"], predictions, label="Polynomial Regression", color="green")
|
51 |
+
elif model_choice == "KNN": # K-Nearest Neighbors (KNN)
|
52 |
+
predictions = knn_model.predict(X)
|
53 |
+
label = "KNN"
|
54 |
+
color = "blue"
|
55 |
+
linestyle = "dotted"
|
56 |
+
plt.plot(df["Year"], predictions, label="KNN", color="blue")
|
57 |
+
else: #Random Forests
|
58 |
+
predictions = randforests_model.predict(X)
|
59 |
+
label = "Random Forests"
|
60 |
+
color = "yellow"
|
61 |
+
linestyle = "dotted"
|
62 |
+
plt.plot(df["Year"], predictions, label="Random Forests", color="yellow")
|
63 |
+
|
64 |
+
|
65 |
|
66 |
plt.xlabel("Year")
|
67 |
plt.ylabel("Population")
|
|
|
92 |
# Do NOT scale X for Linear Regression
|
93 |
X_scaled = scaler.transform(X)
|
94 |
predictions = linear_model.predict(X_scaled)
|
95 |
+
elif model_choice== "Polynomial Regression": # Polynomial Regression
|
96 |
X_scaled = scaler.transform(X) # Apply the same scaling as training
|
97 |
X_poly = poly_features.transform(X_scaled) # Transform for Polynomial Regression
|
98 |
predictions = poly_model.predict(X_poly)
|
99 |
+
elif model_choice == "KNN":
|
100 |
+
predictions = knn_model.predict(X)
|
101 |
+
else:#random forests
|
102 |
+
predictions = randforests_model.predict(X)
|
103 |
|
104 |
|
105 |
df["Predicted Population"] = predictions # Append predictions to DataFrame
|
|
|
135 |
fn=gradio_interface, # Use the single wrapper function
|
136 |
inputs=[
|
137 |
gr.File(label="Upload CSV File"),
|
138 |
+
gr.Radio(["Linear Regression", "Polynomial Regression","KNN", "Random Forests"], label="Choose Model")
|
139 |
],
|
140 |
outputs=[
|
141 |
gr.Dataframe(label="Preview Data"),
|
|
|
144 |
gr.Textbox(label="Model Performance")
|
145 |
],
|
146 |
title="Population Prediction Tool",
|
147 |
+
description="Upload a CSV file with Year and Population data. Choose a model (Linear or Polynomial Regression, KNN or Random Forests) to predict future population trends."
|
148 |
)
|
149 |
|
150 |
# Launch the Gradio App
|
random_forests.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02ede939310eefd2d36ea586f799203e8a6a3ba840b11b0d584389bff51c0b85
|
3 |
+
size 9985
|