Yunus Serhat Bıçakçı commited on
Commit
678a57c
·
1 Parent(s): 4ce6fd4
Files changed (1) hide show
  1. pages/4_LLM.py +0 -277
pages/4_LLM.py DELETED
@@ -1,277 +0,0 @@
1
- import json
2
- import os
3
- import glob
4
- import sys
5
- import time
6
- from pathlib import Path
7
- from typing import Tuple
8
-
9
- from huggingface_hub import hf_hub_download
10
- from PIL import Image
11
- import gradio as gr
12
- import torch
13
- from fairscale.nn.model_parallel.initialize import initialize_model_parallel
14
-
15
- from llama import LLaMA, ModelArgs, Tokenizer, Transformer, VisionModel
16
-
17
- os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
18
-
19
- PROMPT_DICT = {
20
- "prompt_input": (
21
- "Below is an instruction that describes a task, paired with an input that provides further context. "
22
- "Write a response that appropriately completes the request.\n\n"
23
- "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
24
- ),
25
- "prompt_no_input": (
26
- "Below is an instruction that describes a task. "
27
- "Write a response that appropriately completes the request.\n\n"
28
- "### Instruction:\n{instruction}\n\n### Response:"
29
- ),
30
- }
31
-
32
-
33
- def setup_model_parallel() -> Tuple[int, int]:
34
- os.environ['RANK'] = '0'
35
- os.environ['WORLD_SIZE'] = '1'
36
- os.environ['MP'] = '1'
37
- os.environ['MASTER_ADDR'] = '127.0.0.1'
38
- os.environ['MASTER_PORT'] = '2223'
39
- local_rank = int(os.environ.get("LOCAL_RANK", -1))
40
- world_size = int(os.environ.get("WORLD_SIZE", -1))
41
-
42
- torch.distributed.init_process_group("mpi")
43
- initialize_model_parallel(world_size)
44
- torch.cuda.set_device(local_rank)
45
-
46
- # seed must be the same in all processes
47
- torch.manual_seed(1)
48
- return local_rank, world_size
49
-
50
-
51
- def load(
52
- ckpt0_path: str,
53
- ckpt1_path: str,
54
- param_path: str,
55
- tokenizer_path: str,
56
- instruct_adapter_path: str,
57
- caption_adapter_path: str,
58
- local_rank: int,
59
- world_size: int,
60
- max_seq_len: int,
61
- max_batch_size: int,
62
- ) -> LLaMA:
63
- start_time = time.time()
64
- print("Loading")
65
- instruct_adapter_checkpoint = torch.load(
66
- instruct_adapter_path, map_location="cpu")
67
- caption_adapter_checkpoint = torch.load(
68
- caption_adapter_path, map_location="cpu")
69
- with open(param_path, "r") as f:
70
- params = json.loads(f.read())
71
-
72
- model_args: ModelArgs = ModelArgs(
73
- max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
74
- )
75
- model_args.adapter_layer = int(
76
- instruct_adapter_checkpoint['adapter_query.weight'].shape[0] / model_args.adapter_len)
77
- model_args.cap_adapter_layer = int(
78
- caption_adapter_checkpoint['cap_adapter_query.weight'].shape[0] / model_args.cap_adapter_len)
79
-
80
- tokenizer = Tokenizer(model_path=tokenizer_path)
81
- model_args.vocab_size = tokenizer.n_words
82
- torch.set_default_tensor_type(torch.cuda.HalfTensor)
83
- model = Transformer(model_args)
84
-
85
- # To reduce memory usuage
86
- ckpt0 = torch.load(ckpt0_path, map_location='cuda')
87
- model.load_state_dict(ckpt0, strict=False)
88
- del ckpt0
89
- torch.cuda.empty_cache()
90
-
91
- ckpt1 = torch.load(ckpt1_path, map_location='cuda')
92
- model.load_state_dict(ckpt1, strict=False)
93
- del ckpt1
94
- torch.cuda.empty_cache()
95
-
96
- vision_model = VisionModel(model_args)
97
-
98
- torch.set_default_tensor_type(torch.FloatTensor)
99
- model.load_state_dict(instruct_adapter_checkpoint, strict=False)
100
- model.load_state_dict(caption_adapter_checkpoint, strict=False)
101
- vision_model.load_state_dict(caption_adapter_checkpoint, strict=False)
102
-
103
- generator = LLaMA(model, tokenizer, vision_model)
104
- print(f"Loaded in {time.time() - start_time:.2f} seconds")
105
- return generator
106
-
107
-
108
- def instruct_generate(
109
- instruct: str,
110
- input: str = 'none',
111
- max_gen_len=512,
112
- temperature: float = 0.1,
113
- top_p: float = 0.75,
114
- ):
115
- if input == 'none':
116
- prompt = PROMPT_DICT['prompt_no_input'].format_map(
117
- {'instruction': instruct, 'input': ''})
118
- else:
119
- prompt = PROMPT_DICT['prompt_input'].format_map(
120
- {'instruction': instruct, 'input': input})
121
-
122
- results = generator.generate(
123
- [prompt], max_gen_len=max_gen_len, temperature=temperature, top_p=top_p
124
- )
125
- result = results[0].strip()
126
- print(result)
127
- return result
128
-
129
-
130
- def caption_generate(
131
- img: str,
132
- max_gen_len=512,
133
- temperature: float = 0.1,
134
- top_p: float = 0.75,
135
- ):
136
- imgs = [Image.open(img).convert('RGB')]
137
- prompts = ["Generate caption of this image :",] * len(imgs)
138
-
139
- results = generator.generate(
140
- prompts, imgs=imgs, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p
141
- )
142
- result = results[0].strip()
143
- print(result)
144
- return result
145
-
146
-
147
- def download_llama_adapter(instruct_adapter_path, caption_adapter_path):
148
- if not os.path.exists(instruct_adapter_path):
149
- os.system(
150
- f"wget -q -O {instruct_adapter_path} https://github.com/ZrrSkywalker/LLaMA-Adapter/releases/download/v.1.0.0/llama_adapter_len10_layer30_release.pth")
151
-
152
- if not os.path.exists(caption_adapter_path):
153
- os.system(
154
- f"wget -q -O {caption_adapter_path} https://github.com/ZrrSkywalker/LLaMA-Adapter/releases/download/v.1.0.0/llama_adapter_len10_layer30_caption_vit_l.pth")
155
-
156
-
157
- # ckpt_path = "/data1/llma/7B/consolidated.00.pth"
158
- # param_path = "/data1/llma/7B/params.json"
159
- # tokenizer_path = "/data1/llma/tokenizer.model"
160
- ckpt0_path = hf_hub_download(
161
- repo_id="csuhan/llama_storage", filename="consolidated.00_part0.pth")
162
- ckpt1_path = hf_hub_download(
163
- repo_id="csuhan/llama_storage", filename="consolidated.00_part1.pth")
164
- param_path = hf_hub_download(
165
- repo_id="nyanko7/LLaMA-7B", filename="params.json")
166
- tokenizer_path = hf_hub_download(
167
- repo_id="nyanko7/LLaMA-7B", filename="tokenizer.model")
168
- instruct_adapter_path = "llama_adapter_len10_layer30_release.pth"
169
- caption_adapter_path = "llama_adapter_len10_layer30_caption_vit_l.pth"
170
- max_seq_len = 512
171
- max_batch_size = 1
172
-
173
- # download models
174
- # download_llama_adapter(instruct_adapter_path, caption_adapter_path)
175
-
176
- local_rank, world_size = setup_model_parallel()
177
- if local_rank > 0:
178
- sys.stdout = open(os.devnull, "w")
179
-
180
- generator = load(
181
- ckpt0_path, ckpt1_path, param_path, tokenizer_path, instruct_adapter_path, caption_adapter_path, local_rank, world_size, max_seq_len, max_batch_size
182
- )
183
-
184
-
185
- def create_instruct_demo():
186
- with gr.Blocks() as instruct_demo:
187
- with gr.Row():
188
- with gr.Column():
189
- instruction = gr.Textbox(lines=2, label="Instruction")
190
- input = gr.Textbox(
191
- lines=2, label="Context input", placeholder='none')
192
- max_len = gr.Slider(minimum=1, maximum=512,
193
- value=128, label="Max length")
194
- with gr.Accordion(label='Advanced options', open=False):
195
- temp = gr.Slider(minimum=0, maximum=1,
196
- value=0.1, label="Temperature")
197
- top_p = gr.Slider(minimum=0, maximum=1,
198
- value=0.75, label="Top p")
199
-
200
- run_botton = gr.Button("Run")
201
-
202
- with gr.Column():
203
- outputs = gr.Textbox(lines=10, label="Output")
204
-
205
- inputs = [instruction, input, max_len, temp, top_p]
206
-
207
- examples = [
208
- "Tell me about alpacas.",
209
- "Write a Python program that prints the first 10 Fibonacci numbers.",
210
- "Write a conversation between the sun and pluto.",
211
- "Write a theory to explain why cat never existed",
212
- ]
213
- examples = [
214
- [x, "none", 128, 0.1, 0.75]
215
- for x in examples]
216
-
217
- gr.Examples(
218
- examples=examples,
219
- inputs=inputs,
220
- outputs=outputs,
221
- fn=instruct_generate,
222
- cache_examples=os.getenv('SYSTEM') == 'spaces'
223
- )
224
- run_botton.click(fn=instruct_generate, inputs=inputs, outputs=outputs)
225
- return instruct_demo
226
-
227
-
228
- def create_caption_demo():
229
- with gr.Blocks() as instruct_demo:
230
- with gr.Row():
231
- with gr.Column():
232
- img = gr.Image(label='Input', type='filepath')
233
- max_len = gr.Slider(minimum=1, maximum=512,
234
- value=64, label="Max length")
235
- with gr.Accordion(label='Advanced options', open=False):
236
- temp = gr.Slider(minimum=0, maximum=1,
237
- value=0.1, label="Temperature")
238
- top_p = gr.Slider(minimum=0, maximum=1,
239
- value=0.75, label="Top p")
240
-
241
- run_botton = gr.Button("Run")
242
-
243
- with gr.Column():
244
- outputs = gr.Textbox(lines=10, label="Output")
245
-
246
- inputs = [img, max_len, temp, top_p]
247
-
248
- examples = glob.glob("caption_demo/*.jpg")
249
- examples = [
250
- [x, 64, 0.1, 0.75]
251
- for x in examples]
252
-
253
- gr.Examples(
254
- examples=examples,
255
- inputs=inputs,
256
- outputs=outputs,
257
- fn=caption_generate,
258
- cache_examples=os.getenv('SYSTEM') == 'spaces'
259
- )
260
- run_botton.click(fn=caption_generate, inputs=inputs, outputs=outputs)
261
- return instruct_demo
262
-
263
-
264
- description = """
265
- # LLaMA-Adapter🚀
266
- The official demo for **LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention**.
267
- Please refer to our [arXiv paper](https://arxiv.org/abs/2303.16199) and [github](https://github.com/ZrrSkywalker/LLaMA-Adapter) for more details.
268
- """
269
-
270
- with gr.Blocks(css='style.css') as demo:
271
- gr.Markdown(description)
272
- with gr.TabItem("Instruction-Following"):
273
- create_instruct_demo()
274
- with gr.TabItem("Image Captioning"):
275
- create_caption_demo()
276
-
277
- demo.queue(api_open=True, concurrency_count=1).launch()