Spaces:
Paused
Paused
Suvadeep Das
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -9,10 +9,9 @@ import os
|
|
9 |
import json
|
10 |
from huggingface_hub import login
|
11 |
from pdf2image import convert_from_bytes
|
12 |
-
import tempfile
|
13 |
from datetime import datetime
|
14 |
|
15 |
-
# Set your HF token
|
16 |
HF_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN")
|
17 |
if HF_TOKEN:
|
18 |
login(token=HF_TOKEN)
|
@@ -22,7 +21,7 @@ _model = None
|
|
22 |
_tokenizer = None
|
23 |
|
24 |
def load_model():
|
25 |
-
"""Load MiniCPM model
|
26 |
global _model, _tokenizer
|
27 |
|
28 |
if _model is not None and _tokenizer is not None:
|
@@ -57,7 +56,7 @@ def load_model():
|
|
57 |
return _model, _tokenizer
|
58 |
|
59 |
def pdf_to_images(pdf_file):
|
60 |
-
"""Convert PDF file to list of PIL images
|
61 |
try:
|
62 |
if hasattr(pdf_file, 'read'):
|
63 |
pdf_bytes = pdf_file.read()
|
@@ -71,12 +70,20 @@ def pdf_to_images(pdf_file):
|
|
71 |
print(f"Error converting PDF to images: {e}")
|
72 |
return []
|
73 |
|
74 |
-
def
|
75 |
-
"""
|
76 |
-
return """You are a medical
|
|
|
|
|
77 |
|
78 |
{
|
79 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
"date_of_receipt": "",
|
81 |
"patient_first_name": "",
|
82 |
"patient_last_name": "",
|
@@ -114,7 +121,12 @@ def get_medical_extraction_prompt():
|
|
114 |
"description": ""
|
115 |
}
|
116 |
],
|
117 |
-
"refine_reason": ""
|
|
|
|
|
|
|
|
|
|
|
118 |
},
|
119 |
"confidence_scores": {
|
120 |
"date_of_receipt": 0.0,
|
@@ -136,28 +148,106 @@ def get_medical_extraction_prompt():
|
|
136 |
"member_id": 0.0,
|
137 |
"group_id": 0.0
|
138 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
"priority": 0.0,
|
140 |
-
"reason_for_referral": 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
}
|
142 |
}
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
try:
|
156 |
-
# Convert PIL image to proper format if needed
|
157 |
if hasattr(image, 'convert'):
|
158 |
image = image.convert('RGB')
|
159 |
|
160 |
-
# Use the correct MiniCPM chat interface
|
161 |
response = model.chat(
|
162 |
image=image,
|
163 |
msgs=[{
|
@@ -167,301 +257,293 @@ def extract_data_from_image(image, extraction_prompt, model, tokenizer):
|
|
167 |
tokenizer=tokenizer,
|
168 |
sampling=False,
|
169 |
temperature=0.1,
|
170 |
-
max_new_tokens=
|
171 |
)
|
172 |
|
173 |
-
# Try to parse JSON
|
174 |
try:
|
175 |
parsed_data = json.loads(response)
|
176 |
return {
|
177 |
"status": "success",
|
178 |
-
"
|
179 |
"raw_response": response,
|
180 |
-
"
|
181 |
}
|
182 |
except json.JSONDecodeError:
|
|
|
183 |
return {
|
184 |
-
"status": "
|
185 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
"raw_response": response,
|
187 |
-
"
|
188 |
-
"
|
189 |
}
|
190 |
-
|
191 |
except Exception as e:
|
192 |
return {
|
193 |
-
"status": "
|
194 |
"error": str(e),
|
195 |
-
"
|
|
|
196 |
}
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
if field in combined_data and value:
|
202 |
-
# Handle nested dictionaries (like insurance)
|
203 |
-
if isinstance(value, dict) and isinstance(combined_data[field], dict):
|
204 |
-
for sub_field, sub_value in value.items():
|
205 |
-
if sub_field in combined_data[field] and sub_value and not combined_data[field][sub_field]:
|
206 |
-
combined_data[field][sub_field] = sub_value
|
207 |
-
if page_num not in extracted_pages:
|
208 |
-
extracted_pages.append(page_num)
|
209 |
-
# Handle simple fields
|
210 |
-
elif not isinstance(value, (dict, list)) and not combined_data[field]:
|
211 |
-
combined_data[field] = value
|
212 |
-
if page_num not in extracted_pages:
|
213 |
-
extracted_pages.append(page_num)
|
214 |
-
except Exception as e:
|
215 |
-
print(f"Warning: Error merging field {field}: {e}")
|
216 |
-
|
217 |
-
def safe_merge_confidence(combined_confidence, field, score):
|
218 |
-
"""Safely merge confidence scores with type checking"""
|
219 |
-
try:
|
220 |
-
# Handle nested confidence scores (like primary_insurance)
|
221 |
-
if isinstance(score, dict):
|
222 |
-
if field not in combined_confidence:
|
223 |
-
combined_confidence[field] = {}
|
224 |
-
for sub_field, sub_score in score.items():
|
225 |
-
if (sub_field not in combined_confidence[field] and
|
226 |
-
isinstance(sub_score, (int, float)) and sub_score > 0):
|
227 |
-
combined_confidence[field][sub_field] = sub_score
|
228 |
-
# Handle simple confidence scores
|
229 |
-
elif isinstance(score, (int, float)) and score > 0:
|
230 |
-
if field not in combined_confidence:
|
231 |
-
combined_confidence[field] = score
|
232 |
-
except Exception as e:
|
233 |
-
print(f"Warning: Error merging confidence for {field}: {e}")
|
234 |
-
|
235 |
-
def combine_page_data(pages_data):
|
236 |
-
"""Combine extracted data from multiple pages into final medical record - FIXED VERSION"""
|
237 |
-
combined_data = {
|
238 |
-
"date_of_receipt": "",
|
239 |
-
"patient_first_name": "",
|
240 |
-
"patient_last_name": "",
|
241 |
-
"patient_dob": "",
|
242 |
-
"patient_gender": "",
|
243 |
-
"patient_primary_phone_number": "",
|
244 |
-
"patient_secondary_phone_number": "",
|
245 |
-
"patient_email": "",
|
246 |
-
"patient_address": "",
|
247 |
-
"patient_zip_code": "",
|
248 |
-
"referral_source": "",
|
249 |
-
"referral_source_phone_no": "",
|
250 |
-
"referral_source_fax_no": "",
|
251 |
-
"referral_source_email": "",
|
252 |
-
"primary_insurance": {
|
253 |
-
"payer_name": "",
|
254 |
-
"member_id": "",
|
255 |
-
"group_id": ""
|
256 |
-
},
|
257 |
-
"secondary_insurance": {
|
258 |
-
"payer_name": None,
|
259 |
-
"member_id": None,
|
260 |
-
"group_id": None
|
261 |
-
},
|
262 |
-
"tertiary_insurance": {
|
263 |
-
"payer_name": None,
|
264 |
-
"member_id": None,
|
265 |
-
"group_id": None
|
266 |
-
},
|
267 |
-
"priority": "",
|
268 |
-
"reason_for_referral": "",
|
269 |
-
"diagnosis_informations": [],
|
270 |
-
"refine_reason": "",
|
271 |
-
"extracted_page_numbers": []
|
272 |
-
}
|
273 |
-
|
274 |
-
combined_confidence = {}
|
275 |
-
|
276 |
-
# Combine data from all pages
|
277 |
-
for page_num, page_data in enumerate(pages_data, 1):
|
278 |
-
try:
|
279 |
-
if page_data.get("page_data", {}).get("status") == "success":
|
280 |
-
extracted = page_data["page_data"].get("extracted_data", {})
|
281 |
-
|
282 |
-
# If we got JSON data, merge it
|
283 |
-
if isinstance(extracted, dict) and "data" in extracted:
|
284 |
-
page_info = extracted["data"]
|
285 |
-
|
286 |
-
# Safely merge each field
|
287 |
-
for field, value in page_info.items():
|
288 |
-
safe_merge_field(combined_data, field, value, page_num, combined_data["extracted_page_numbers"])
|
289 |
-
|
290 |
-
# Safely merge confidence scores
|
291 |
-
if "confidence_scores" in extracted:
|
292 |
-
for field, score in extracted["confidence_scores"].items():
|
293 |
-
safe_merge_confidence(combined_confidence, field, score)
|
294 |
-
except Exception as e:
|
295 |
-
print(f"Warning: Error processing page {page_num}: {e}")
|
296 |
-
continue
|
297 |
-
|
298 |
-
return {
|
299 |
-
"data": combined_data,
|
300 |
-
"confidence_scores": combined_confidence,
|
301 |
-
"fields_needing_review": [],
|
302 |
-
"metadata": {
|
303 |
-
"extraction_timestamp": datetime.now().isoformat(),
|
304 |
-
"model_used": "MiniCPM-V-2_6-GPU",
|
305 |
-
"confidence_threshold": 0.9,
|
306 |
-
"requires_human_review": False,
|
307 |
-
"total_pages_processed": len(pages_data)
|
308 |
-
}
|
309 |
-
}
|
310 |
-
|
311 |
-
@spaces.GPU(duration=600) # 10 minutes for large documents
|
312 |
-
def extract_efax_from_pdf(pdf_file, custom_prompt=None):
|
313 |
-
"""Main function to process multi-page PDF eFax - ALL GPU processing happens here"""
|
314 |
try:
|
315 |
if pdf_file is None:
|
316 |
-
return {
|
317 |
-
"status": "error",
|
318 |
-
"error": "No PDF file provided",
|
319 |
-
"total_pages": 0,
|
320 |
-
"pages_data": []
|
321 |
-
}
|
322 |
|
323 |
-
#
|
324 |
print("Converting PDF to images...")
|
325 |
images = pdf_to_images(pdf_file)
|
326 |
|
327 |
if not images:
|
328 |
-
return {
|
329 |
-
"status": "error",
|
330 |
-
"error": "Could not convert PDF to images",
|
331 |
-
"total_pages": 0,
|
332 |
-
"pages_data": []
|
333 |
-
}
|
334 |
|
335 |
-
print(f"
|
336 |
|
337 |
-
#
|
338 |
model, tokenizer = load_model()
|
|
|
339 |
|
340 |
-
#
|
341 |
-
|
|
|
342 |
|
343 |
-
# Step 4: Process all pages within single GPU session
|
344 |
-
pages_data = []
|
345 |
for i, image in enumerate(images):
|
346 |
-
print(f"
|
347 |
-
|
348 |
-
|
|
|
|
|
|
|
|
|
|
|
349 |
"page_number": i + 1,
|
350 |
-
"
|
|
|
351 |
})
|
352 |
|
353 |
-
|
354 |
-
|
355 |
-
# Step 5: Combine data from all pages (with error handling)
|
356 |
-
combined_result = combine_page_data(pages_data)
|
357 |
-
|
358 |
-
# Final result
|
359 |
-
result = {
|
360 |
-
"status": "success",
|
361 |
"total_pages": len(images),
|
362 |
-
"
|
363 |
-
"
|
364 |
-
"
|
365 |
-
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
}
|
368 |
|
369 |
-
return result
|
370 |
-
|
371 |
except Exception as e:
|
372 |
-
print(f"Error in extract_efax_from_pdf: {e}")
|
373 |
return {
|
374 |
"status": "error",
|
375 |
"error": str(e),
|
376 |
"total_pages": 0,
|
377 |
-
"
|
378 |
}
|
379 |
|
380 |
-
# Create Gradio Interface
|
381 |
def create_gradio_interface():
|
382 |
-
with gr.Blocks(title="
|
383 |
-
gr.Markdown("# π₯
|
384 |
-
gr.Markdown("
|
385 |
|
386 |
-
with gr.Tab("π
|
387 |
with gr.Row():
|
388 |
with gr.Column():
|
389 |
pdf_input = gr.File(
|
390 |
file_types=[".pdf"],
|
391 |
-
label="Upload eFax PDF
|
392 |
file_count="single"
|
393 |
)
|
394 |
|
395 |
-
with gr.Accordion("π§
|
396 |
prompt_input = gr.Textbox(
|
397 |
value="",
|
398 |
-
label="Custom Extraction Prompt (
|
399 |
-
lines=
|
400 |
-
placeholder="Leave empty
|
401 |
)
|
402 |
|
403 |
-
extract_btn = gr.Button("
|
404 |
|
405 |
gr.Markdown("""
|
406 |
-
###
|
407 |
-
- **
|
408 |
-
- **
|
409 |
-
- **
|
410 |
-
- **
|
|
|
|
|
|
|
411 |
""")
|
412 |
|
413 |
with gr.Column():
|
414 |
status_output = gr.Textbox(label="π Processing Status", interactive=False)
|
415 |
-
output = gr.JSON(label="π
|
416 |
|
417 |
with gr.Tab("π API Usage"):
|
418 |
gr.Markdown("""
|
419 |
-
##
|
420 |
|
421 |
### Python Usage
|
422 |
```
|
423 |
import requests
|
424 |
import base64
|
425 |
|
426 |
-
with open("
|
427 |
pdf_b64 = base64.b64encode(f.read()).decode()
|
428 |
|
429 |
response = requests.post(
|
430 |
"https://your-username-extracting-efax.hf.space/api/predict",
|
431 |
json={
|
432 |
"data": [
|
433 |
-
{"name": "
|
434 |
-
"" #
|
435 |
]
|
436 |
}
|
437 |
)
|
438 |
|
439 |
-
# Should work without dict/int comparison errors
|
440 |
result = response.json()
|
441 |
-
|
442 |
-
|
443 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
```
|
445 |
""")
|
446 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
def process_with_status(pdf_file, custom_prompt):
|
448 |
if pdf_file is None:
|
449 |
-
return "β No PDF
|
450 |
|
451 |
yield "π Converting PDF to images...", {}
|
452 |
|
453 |
try:
|
454 |
-
result =
|
455 |
|
456 |
if result["status"] == "success":
|
457 |
-
yield f"β
|
458 |
else:
|
459 |
-
yield f"β Error: {result.get('error'
|
460 |
|
461 |
except Exception as e:
|
462 |
-
yield f"β
|
463 |
|
464 |
-
# Connect the interface
|
465 |
extract_btn.click(
|
466 |
fn=process_with_status,
|
467 |
inputs=[pdf_input, prompt_input],
|
@@ -471,7 +553,6 @@ def create_gradio_interface():
|
|
471 |
|
472 |
return demo
|
473 |
|
474 |
-
# Launch the app
|
475 |
if __name__ == "__main__":
|
476 |
demo = create_gradio_interface()
|
477 |
demo.queue(
|
|
|
9 |
import json
|
10 |
from huggingface_hub import login
|
11 |
from pdf2image import convert_from_bytes
|
|
|
12 |
from datetime import datetime
|
13 |
|
14 |
+
# Set your HF token
|
15 |
HF_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN")
|
16 |
if HF_TOKEN:
|
17 |
login(token=HF_TOKEN)
|
|
|
21 |
_tokenizer = None
|
22 |
|
23 |
def load_model():
|
24 |
+
"""Load MiniCPM model"""
|
25 |
global _model, _tokenizer
|
26 |
|
27 |
if _model is not None and _tokenizer is not None:
|
|
|
56 |
return _model, _tokenizer
|
57 |
|
58 |
def pdf_to_images(pdf_file):
|
59 |
+
"""Convert PDF file to list of PIL images"""
|
60 |
try:
|
61 |
if hasattr(pdf_file, 'read'):
|
62 |
pdf_bytes = pdf_file.read()
|
|
|
70 |
print(f"Error converting PDF to images: {e}")
|
71 |
return []
|
72 |
|
73 |
+
def get_comprehensive_medical_extraction_prompt():
|
74 |
+
"""Complete medical data extraction prompt with all fields"""
|
75 |
+
return """You are a deterministic medical data extraction engine. You will receive a single page from a medical document. Your task is to extract ALL visible information from this page and return it in the exact JSON format below.
|
76 |
+
|
77 |
+
Your response MUST follow this exact JSON format:
|
78 |
|
79 |
{
|
80 |
+
"page_analysis": {
|
81 |
+
"page_contains_text": true,
|
82 |
+
"page_type": "cover_page|patient_demographics|insurance|medical_history|referral_info|other",
|
83 |
+
"overall_page_confidence": 0.0,
|
84 |
+
"all_visible_text": "Complete text transcription of everything visible on this page"
|
85 |
+
},
|
86 |
+
"extracted_data": {
|
87 |
"date_of_receipt": "",
|
88 |
"patient_first_name": "",
|
89 |
"patient_last_name": "",
|
|
|
121 |
"description": ""
|
122 |
}
|
123 |
],
|
124 |
+
"refine_reason": "",
|
125 |
+
"additional_medical_info": "",
|
126 |
+
"provider_names": [],
|
127 |
+
"appointment_dates": [],
|
128 |
+
"medication_info": [],
|
129 |
+
"other_important_details": ""
|
130 |
},
|
131 |
"confidence_scores": {
|
132 |
"date_of_receipt": 0.0,
|
|
|
148 |
"member_id": 0.0,
|
149 |
"group_id": 0.0
|
150 |
},
|
151 |
+
"secondary_insurance": {
|
152 |
+
"payer_name": 0.0,
|
153 |
+
"member_id": 0.0,
|
154 |
+
"group_id": 0.0
|
155 |
+
},
|
156 |
+
"tertiary_insurance": {
|
157 |
+
"payer_name": 0.0,
|
158 |
+
"member_id": 0.0,
|
159 |
+
"group_id": 0.0
|
160 |
+
},
|
161 |
"priority": 0.0,
|
162 |
+
"reason_for_referral": 0.0,
|
163 |
+
"diagnosis_informations": 0.0,
|
164 |
+
"refine_reason": 0.0
|
165 |
+
},
|
166 |
+
"fields_found_on_this_page": [],
|
167 |
+
"metadata": {
|
168 |
+
"extraction_timestamp": "",
|
169 |
+
"model_used": "MiniCPM-V-2_6-GPU",
|
170 |
+
"page_processing_notes": ""
|
171 |
}
|
172 |
}
|
173 |
|
174 |
+
--------------------------------
|
175 |
+
STRICT FIELD FORMATTING RULES:
|
176 |
+
--------------------------------
|
177 |
+
|
178 |
+
β’ Dates: Format as MM/DD/YYYY only
|
179 |
+
β’ Phone numbers: Use digits and hyphens only (e.g., 406-596-1901), no extensions or parentheses
|
180 |
+
β’ Gender: "Male", "Female", or "Other" only
|
181 |
+
β’ Email: Must contain @ and valid domain, otherwise leave empty
|
182 |
+
β’ Zip code: Only extract as last 5 digits of address
|
183 |
+
|
184 |
+
--------------------------------
|
185 |
+
REFERRAL SOURCE RULES:
|
186 |
+
--------------------------------
|
187 |
+
|
188 |
+
β’ Extract clinic/hospital/facility name ONLY β never the provider's name
|
189 |
+
β’ Use facility's phone/fax/email, not individual provider's contact
|
190 |
+
β’ Prefer header/fax banner for referral source over body text
|
191 |
+
β’ Do not extract receiver clinic names (e.g., Frontier Psychiatry) as referral source
|
192 |
+
|
193 |
+
--------------------------------
|
194 |
+
INSURANCE EXTRACTION FORMAT:
|
195 |
+
--------------------------------
|
196 |
+
|
197 |
+
Each tier must follow this structure:
|
198 |
+
"primary_insurance": {
|
199 |
+
"payer_name": "string",
|
200 |
+
"member_id": "string",
|
201 |
+
"group_id": "string"
|
202 |
+
},
|
203 |
+
"secondary_insurance": { ... },
|
204 |
+
"tertiary_insurance": { ... }
|
205 |
+
|
206 |
+
β’ Use "member_id" for any ID (Policy, Insurance ID, Subscriber ID, etc.)
|
207 |
+
β’ Use "group_id" ONLY if explicitly labeled as "Group ID", "Group Number", etc.
|
208 |
+
β’ Leave all fields empty if "Self Pay" is indicated
|
209 |
+
|
210 |
+
--------------------------------
|
211 |
+
DIAGNOSIS EXTRACTION RULES:
|
212 |
+
--------------------------------
|
213 |
|
214 |
+
β’ Extract diagnosis codes AND their descriptions
|
215 |
+
β’ If only code is present, set description to "" and confidence β€ 0.6
|
216 |
+
β’ DO NOT infer description from ICD code
|
217 |
+
|
218 |
+
--------------------------------
|
219 |
+
CONFIDENCE SCORING:
|
220 |
+
--------------------------------
|
221 |
+
|
222 |
+
Assign realistic confidence (0.0β1.0) per field, e.g.:
|
223 |
+
|
224 |
+
β’ 0.95β1.0 β Clearly labeled, unambiguous data
|
225 |
+
β’ 0.7β0.94 β Some uncertainty (low quality, odd format)
|
226 |
+
β’ 0.0β0.6 β Missing, ambiguous, or noisy data
|
227 |
+
β’ Use float precision (e.g., 0.87, not just 1.0)
|
228 |
+
|
229 |
+
Always populate the `confidence_scores` dictionary with the same structure as `extracted_data`.
|
230 |
+
|
231 |
+
--------------------------------
|
232 |
+
CRITICAL INSTRUCTIONS:
|
233 |
+
--------------------------------
|
234 |
+
|
235 |
+
1. READ EVERYTHING: Transcribe all visible text in "all_visible_text"
|
236 |
+
2. EXTRACT PRECISELY: Only extract what's actually visible on THIS page
|
237 |
+
3. NO ASSUMPTIONS: Don't guess or infer information not present
|
238 |
+
4. FIELD CLASSIFICATION: List which fields were actually found in "fields_found_on_this_page"
|
239 |
+
5. CONFIDENCE: Be realistic - 0.0 if not found, up to 1.0 if completely certain
|
240 |
+
6. FORMAT EXACTLY: Follow date/phone/address formatting rules strictly
|
241 |
+
7. JSON ONLY: Return only valid JSON, no other text
|
242 |
+
|
243 |
+
This is ONE PAGE of a multi-page document. Extract only what's visible on this specific page."""
|
244 |
+
|
245 |
+
def extract_single_page(image, extraction_prompt, model, tokenizer):
|
246 |
+
"""Extract data from a single page with comprehensive medical fields"""
|
247 |
try:
|
|
|
248 |
if hasattr(image, 'convert'):
|
249 |
image = image.convert('RGB')
|
250 |
|
|
|
251 |
response = model.chat(
|
252 |
image=image,
|
253 |
msgs=[{
|
|
|
257 |
tokenizer=tokenizer,
|
258 |
sampling=False,
|
259 |
temperature=0.1,
|
260 |
+
max_new_tokens=4000 # More tokens for comprehensive extraction
|
261 |
)
|
262 |
|
263 |
+
# Try to parse JSON
|
264 |
try:
|
265 |
parsed_data = json.loads(response)
|
266 |
return {
|
267 |
"status": "success",
|
268 |
+
"data": parsed_data,
|
269 |
"raw_response": response,
|
270 |
+
"model": "MiniCPM-V-2_6-GPU"
|
271 |
}
|
272 |
except json.JSONDecodeError:
|
273 |
+
# Return structured error with raw text
|
274 |
return {
|
275 |
+
"status": "json_parse_error",
|
276 |
+
"data": {
|
277 |
+
"page_analysis": {
|
278 |
+
"page_contains_text": True,
|
279 |
+
"page_type": "unknown",
|
280 |
+
"overall_page_confidence": 0.5,
|
281 |
+
"all_visible_text": response
|
282 |
+
},
|
283 |
+
"extracted_data": {},
|
284 |
+
"confidence_scores": {},
|
285 |
+
"fields_found_on_this_page": [],
|
286 |
+
"parsing_error": "Could not parse JSON response"
|
287 |
+
},
|
288 |
"raw_response": response,
|
289 |
+
"model": "MiniCPM-V-2_6-GPU",
|
290 |
+
"error": "JSON parsing failed - returned raw text"
|
291 |
}
|
|
|
292 |
except Exception as e:
|
293 |
return {
|
294 |
+
"status": "extraction_error",
|
295 |
"error": str(e),
|
296 |
+
"data": None,
|
297 |
+
"raw_response": ""
|
298 |
}
|
299 |
|
300 |
+
@spaces.GPU(duration=600) # 10 minutes
|
301 |
+
def extract_pages_individually(pdf_file, custom_prompt=None):
|
302 |
+
"""Extract each page individually with comprehensive medical data"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
try:
|
304 |
if pdf_file is None:
|
305 |
+
return {"status": "error", "error": "No PDF provided"}
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
+
# Convert PDF to images
|
308 |
print("Converting PDF to images...")
|
309 |
images = pdf_to_images(pdf_file)
|
310 |
|
311 |
if not images:
|
312 |
+
return {"status": "error", "error": "Could not convert PDF"}
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
+
print(f"Processing {len(images)} pages individually with comprehensive extraction...")
|
315 |
|
316 |
+
# Load model once
|
317 |
model, tokenizer = load_model()
|
318 |
+
extraction_prompt = custom_prompt or get_comprehensive_medical_extraction_prompt()
|
319 |
|
320 |
+
# Process each page independently
|
321 |
+
results = []
|
322 |
+
successful_extractions = 0
|
323 |
|
|
|
|
|
324 |
for i, image in enumerate(images):
|
325 |
+
print(f"Extracting page {i+1}/{len(images)} with full medical fields...")
|
326 |
+
|
327 |
+
page_result = extract_single_page(image, extraction_prompt, model, tokenizer)
|
328 |
+
|
329 |
+
if page_result["status"] == "success":
|
330 |
+
successful_extractions += 1
|
331 |
+
|
332 |
+
results.append({
|
333 |
"page_number": i + 1,
|
334 |
+
"extraction_result": page_result,
|
335 |
+
"timestamp": datetime.now().isoformat()
|
336 |
})
|
337 |
|
338 |
+
return {
|
339 |
+
"status": "success",
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
"total_pages": len(images),
|
341 |
+
"successful_extractions": successful_extractions,
|
342 |
+
"individual_pages": results,
|
343 |
+
"processing_info": {
|
344 |
+
"model_used": "MiniCPM-V-2_6-GPU",
|
345 |
+
"extraction_timestamp": datetime.now().isoformat(),
|
346 |
+
"processing_method": "comprehensive_individual_page_extraction",
|
347 |
+
"extraction_prompt_used": "comprehensive_medical_fields",
|
348 |
+
"note": "Each page processed with full medical field extraction - combine results with separate AI"
|
349 |
+
},
|
350 |
+
"next_step_instructions": {
|
351 |
+
"combination_method": "Use ChatGPT/Claude to combine all pages into final medical record",
|
352 |
+
"fields_to_aggregate": [
|
353 |
+
"date_of_receipt", "patient_demographics", "insurance_info",
|
354 |
+
"referral_source", "diagnosis_codes", "reason_for_referral"
|
355 |
+
],
|
356 |
+
"confidence_handling": "Take highest confidence values across pages for each field"
|
357 |
+
}
|
358 |
}
|
359 |
|
|
|
|
|
360 |
except Exception as e:
|
|
|
361 |
return {
|
362 |
"status": "error",
|
363 |
"error": str(e),
|
364 |
"total_pages": 0,
|
365 |
+
"individual_pages": []
|
366 |
}
|
367 |
|
|
|
368 |
def create_gradio_interface():
|
369 |
+
with gr.Blocks(title="Comprehensive Medical Page Extractor", theme=gr.themes.Soft()) as demo:
|
370 |
+
gr.Markdown("# π₯ Comprehensive Medical Data Extractor")
|
371 |
+
gr.Markdown("π **Complete Field Extraction** - All medical fields extracted per page, ready for AI combination")
|
372 |
|
373 |
+
with gr.Tab("π Comprehensive Page Extraction"):
|
374 |
with gr.Row():
|
375 |
with gr.Column():
|
376 |
pdf_input = gr.File(
|
377 |
file_types=[".pdf"],
|
378 |
+
label="Upload Medical eFax PDF",
|
379 |
file_count="single"
|
380 |
)
|
381 |
|
382 |
+
with gr.Accordion("π§ Custom Prompt", open=False):
|
383 |
prompt_input = gr.Textbox(
|
384 |
value="",
|
385 |
+
label="Custom Extraction Prompt (optional)",
|
386 |
+
lines=4,
|
387 |
+
placeholder="Leave empty for comprehensive medical extraction with all fields..."
|
388 |
)
|
389 |
|
390 |
+
extract_btn = gr.Button("π₯ Extract All Medical Fields Per Page", variant="primary", size="lg")
|
391 |
|
392 |
gr.Markdown("""
|
393 |
+
### π Comprehensive Fields Extracted:
|
394 |
+
- β
**Patient Demographics** (name, DOB, gender, address, phone, email)
|
395 |
+
- β
**Insurance Information** (primary/secondary/tertiary with IDs)
|
396 |
+
- β
**Referral Source** (clinic, phone, fax, email)
|
397 |
+
- β
**Medical Codes** (diagnosis codes with descriptions)
|
398 |
+
- β
**Clinical Info** (priority, reason for referral, medical history)
|
399 |
+
- β
**Confidence Scores** (0.0-1.0 for each field)
|
400 |
+
- β
**Full Text Transcription** (everything visible on each page)
|
401 |
""")
|
402 |
|
403 |
with gr.Column():
|
404 |
status_output = gr.Textbox(label="π Processing Status", interactive=False)
|
405 |
+
output = gr.JSON(label="π Comprehensive Page Results", show_label=True)
|
406 |
|
407 |
with gr.Tab("π API Usage"):
|
408 |
gr.Markdown("""
|
409 |
+
## Comprehensive Medical Extraction API
|
410 |
|
411 |
### Python Usage
|
412 |
```
|
413 |
import requests
|
414 |
import base64
|
415 |
|
416 |
+
with open("medical_efax.pdf", "rb") as f:
|
417 |
pdf_b64 = base64.b64encode(f.read()).decode()
|
418 |
|
419 |
response = requests.post(
|
420 |
"https://your-username-extracting-efax.hf.space/api/predict",
|
421 |
json={
|
422 |
"data": [
|
423 |
+
{"name": "efax.pdf", "data": f"application/pdf;base64,{pdf_b64}"},
|
424 |
+
"" # Custom prompt (optional)
|
425 |
]
|
426 |
}
|
427 |
)
|
428 |
|
|
|
429 |
result = response.json()
|
430 |
+
|
431 |
+
# Access comprehensive page results
|
432 |
+
for page in result["data"]["individual_pages"]:
|
433 |
+
page_num = page["page_number"]
|
434 |
+
extraction = page["extraction_result"]
|
435 |
+
|
436 |
+
if extraction["status"] == "success":
|
437 |
+
data = extraction["data"]
|
438 |
+
|
439 |
+
# Page analysis
|
440 |
+
print(f"Page {page_num} Type: {data['page_analysis']['page_type']}")
|
441 |
+
print(f"Confidence: {data['page_analysis']['overall_page_confidence']}")
|
442 |
+
|
443 |
+
# Extracted medical fields
|
444 |
+
extracted = data['extracted_data']
|
445 |
+
print(f"Patient: {extracted['patient_first_name']} {extracted['patient_last_name']}")
|
446 |
+
print(f"Insurance: {extracted['primary_insurance']['payer_name']}")
|
447 |
+
print(f"Diagnosis: {extracted['diagnosis_informations']}")
|
448 |
+
|
449 |
+
# Fields found on this page
|
450 |
+
print(f"Fields found: {data['fields_found_on_this_page']}")
|
451 |
+
```
|
452 |
+
|
453 |
+
### Use ChatGPT/Claude for Final Combination
|
454 |
+
```
|
455 |
+
# Prepare all page data for combination
|
456 |
+
all_pages_data = []
|
457 |
+
for page in result["data"]["individual_pages"]:
|
458 |
+
if page["extraction_result"]["status"] == "success":
|
459 |
+
all_pages_data.append({
|
460 |
+
"page": page["page_number"],
|
461 |
+
"extracted_data": page["extraction_result"]["data"]["extracted_data"],
|
462 |
+
"confidence_scores": page["extraction_result"]["data"]["confidence_scores"],
|
463 |
+
"fields_found": page["extraction_result"]["data"]["fields_found_on_this_page"]
|
464 |
+
})
|
465 |
+
|
466 |
+
# Send to ChatGPT for combination
|
467 |
+
combination_prompt = f'''
|
468 |
+
Combine these {len(all_pages_data)} medical document pages into a single comprehensive patient record.
|
469 |
+
|
470 |
+
For each field, choose the value with highest confidence across all pages.
|
471 |
+
If multiple pages have the same field, verify consistency.
|
472 |
+
|
473 |
+
Page Data:
|
474 |
+
{json.dumps(all_pages_data, indent=2)}
|
475 |
+
|
476 |
+
Return the final medical record in the same structure with:
|
477 |
+
- Combined data from all pages
|
478 |
+
- Highest confidence scores per field
|
479 |
+
- List of pages where each field was found
|
480 |
+
- Fields needing human review (confidence < 0.9)
|
481 |
+
'''
|
482 |
```
|
483 |
""")
|
484 |
|
485 |
+
with gr.Tab("π Field Mapping"):
|
486 |
+
gr.Markdown("""
|
487 |
+
## Complete Medical Fields Extracted Per Page
|
488 |
+
|
489 |
+
### Patient Demographics
|
490 |
+
- `date_of_receipt` - Document receipt date (MM/DD/YYYY)
|
491 |
+
- `patient_first_name` - Patient's first name
|
492 |
+
- `patient_last_name` - Patient's last name
|
493 |
+
- `patient_dob` - Date of birth (MM/DD/YYYY)
|
494 |
+
- `patient_gender` - Male/Female/Other only
|
495 |
+
- `patient_primary_phone_number` - Main phone (###-###-####)
|
496 |
+
- `patient_secondary_phone_number` - Secondary phone
|
497 |
+
- `patient_email` - Email address (must have @ and domain)
|
498 |
+
- `patient_address` - Full address
|
499 |
+
- `patient_zip_code` - Last 5 digits only
|
500 |
+
|
501 |
+
### Referral Information
|
502 |
+
- `referral_source` - Clinic/hospital name (NOT provider name)
|
503 |
+
- `referral_source_phone_no` - Facility phone
|
504 |
+
- `referral_source_fax_no` - Facility fax
|
505 |
+
- `referral_source_email` - Facility email
|
506 |
+
|
507 |
+
### Insurance (Primary/Secondary/Tertiary)
|
508 |
+
- `payer_name` - Insurance company name
|
509 |
+
- `member_id` - Any ID (policy, subscriber, member, etc.)
|
510 |
+
- `group_id` - Only if explicitly labeled as "Group"
|
511 |
+
|
512 |
+
### Medical Information
|
513 |
+
- `priority` - "Routine" or "Urgent" only
|
514 |
+
- `reason_for_referral` - Why patient was referred
|
515 |
+
- `diagnosis_informations` - Array of {code, description}
|
516 |
+
- `refine_reason` - Additional refinement details
|
517 |
+
|
518 |
+
### Page Analysis
|
519 |
+
- `page_type` - Classification of page content
|
520 |
+
- `all_visible_text` - Complete text transcription
|
521 |
+
- `overall_page_confidence` - Page extraction confidence
|
522 |
+
- `fields_found_on_this_page` - List of fields with data
|
523 |
+
|
524 |
+
### Confidence Scoring (0.0 - 1.0)
|
525 |
+
- `0.95-1.0` β Clearly visible, unambiguous
|
526 |
+
- `0.7-0.94` β Some uncertainty, formatting issues
|
527 |
+
- `0.0-0.6` β Missing, unclear, or poor quality
|
528 |
+
""")
|
529 |
+
|
530 |
def process_with_status(pdf_file, custom_prompt):
|
531 |
if pdf_file is None:
|
532 |
+
return "β No PDF uploaded", {"error": "Upload a PDF file"}
|
533 |
|
534 |
yield "π Converting PDF to images...", {}
|
535 |
|
536 |
try:
|
537 |
+
result = extract_pages_individually(pdf_file, custom_prompt if custom_prompt.strip() else None)
|
538 |
|
539 |
if result["status"] == "success":
|
540 |
+
yield f"β
Extracted comprehensive medical data from {result['successful_extractions']}/{result['total_pages']} pages", result
|
541 |
else:
|
542 |
+
yield f"β Error: {result.get('error')}", result
|
543 |
|
544 |
except Exception as e:
|
545 |
+
yield f"β Failed: {str(e)}", {"error": str(e)}
|
546 |
|
|
|
547 |
extract_btn.click(
|
548 |
fn=process_with_status,
|
549 |
inputs=[pdf_input, prompt_input],
|
|
|
553 |
|
554 |
return demo
|
555 |
|
|
|
556 |
if __name__ == "__main__":
|
557 |
demo = create_gradio_interface()
|
558 |
demo.queue(
|