cryptocalypse
Create nos.py
40f0e47 verified
raw
history blame
9.64 kB
import sys
import math
import re
import heapq
from collections import defaultdict, Counter
from typing import List, Tuple, Dict
class TextProcessor:
def __init__(self, texto):
self.texto = texto
def entropy(self):
simbolos = {}
total_caracteres = len(self.texto)
for caracter in self.texto:
simbolos[caracter] = simbolos.get(caracter, 0) + 1
entropia = 0
for count in simbolos.values():
probabilidad = count / total_caracteres
entropia -= probabilidad * math.log2(probabilidad)
return simbolos, entropia
def common_string(self, cadena1, cadena2):
longitud1 = len(cadena1)
longitud2 = len(cadena2)
comun = ''
subcadenas_comunes = []
for i in range(longitud1):
for j in range(longitud2):
k = 0
while (i+k < longitud1 and j+k < longitud2 and cadena1[i+k] == cadena2[j+k]):
k += 1
if k > 0:
subcadenas_comunes.append(cadena1[i:i+k])
if subcadenas_comunes:
comun = max(subcadenas_comunes, key=len)
return comun
def magic_split(self):
unique_symbols = set(self.texto)
symbol_distances = {}
for symbol in unique_symbols:
indices = [i for i, char in enumerate(self.texto) if char == symbol]
if len(indices) > 1:
distances = [indices[i + 1] - indices[i] for i in range(len(indices) - 1)]
symbol_distances[symbol] = distances
variation = {symbol: max(distances) - min(distances) for symbol, distances in symbol_distances.items() if distances}
mins = {}
for v in variation:
if variation[v]!=0 and variation[v]!=1:
mins[v] = variation[v]
best_symbol = min(mins, key=mins.get)
return best_symbol
def rotate_string(self, string, n):
indice = n % len(string)
string_rotado = string[indice:] + string[:indice]
return string_rotado
def rotate_compare(self, tokiA, tokiB):
if tokiA >= tokiB:
tokA = tokiA
tokB = tokiB
ltokA = len(tokA)
else:
tokA = tokiB
tokB = tokiA
ltokA = len(tokB)
i = 0
rotations = {}
while i < ltokA:
tokrotated = self.rotate_string(tokA, i)
rotations[str(i)] = self.common_string(tokrotated, tokB)
i += 1
best_r = ""
for x in rotations:
lb = len(best_r)
rot = rotations[x]
lrot = len(rot)
if lrot > 1 and lrot < ltokA and lrot > lb:
best_r = rot
return best_r
def get_subTokens(self, spl):
sub_tokens = self.texto.split(spl)
toks = []
for tok in sub_tokens:
for tok2 in sub_tokens:
if tok != tok2:
toks.append(self.rotate_compare(tok, tok2))
return list(set(toks))
def tokenize(self, spliter_optimo):
tokens = self.get_subTokens(spliter_optimo)
tokenized_sentence = {}
chunk = self.texto.split(spliter_optimo)
for txt in chunk:
best_split = ""
if len(txt)<3:
tokenized_sentence[txt]= txt
else:
for tok in tokens:
if tok != "":
lt = len(tok)
lb = len(best_split)
spltxt = txt.split(tok)
if len(spltxt) > 1:
l0 = len(spltxt[0])
l1 = len(spltxt[1])
if lt < len(txt) and lt > lb:
best_split = tok
tokenized_sentence[txt] = " " + spltxt[0] + "-" + tok + "-" + spltxt[1]
return tokenized_sentence
def symbol_distances(self,texto, tokens):
# Ordena los tokens por longitud descendente para garantizar la divisi贸n m谩s larga posible.
txt = texto
for tok in tokens:
if tok !='':
txt = txt.replace(tok,"-"+tok+"-")
#print(txt)
arr = txt.split("-")
return [elem for elem in arr if elem != '']
def distances(self,tokens):
tokens_unicos = {}
for i, token in enumerate(tokens):
if token not in tokens_unicos:
tokens_unicos[token] = [i]
else:
tokens_unicos[token].append(i)
return tokens_unicos
def from_distances(self,tokens_distancias):
rebuild={}
recoded_dic={}
for tok in tokens_distancias:
for dis in tokens_distancias[tok]:
try:
rebuild[dis]=tok
recoded_dic[dis] = gindex(tokens_distancias,tok)
except:
pass
enc = {k: recoded_dic[k] for k in sorted(recoded_dic)}
rebu = {k: rebuild[k] for k in sorted(rebuild)}
dic_str = ""
for d in tokens_distancias:
dic_str+=","+d
enc_str = ""
for e in enc:
enc_str += ","+str(enc[e])
return dic_str,enc_str
def gindex(obj, key):
keys = list(obj.keys())
try:
index = keys.index(key)
return index
except ValueError:
return None # Key not found in the dictionary
# Ejemplo de uso:
texto_ejemplo = "cuando te digo vete , te aburres , corres o andas ? cuando me dices vete , me aburro, corro y ando"
processor = TextProcessor(texto_ejemplo)
spliter_optimo = processor.magic_split()
tokenized_sentence = processor.tokenize(spliter_optimo)
token_txt =""
for token in tokenized_sentence:
token_txt += "-"+tokenized_sentence[token]
tokens = set(token_txt.split("-"))
symb = processor.symbol_distances(texto_ejemplo,tokens)
print("Tokens")
print(tokens)
print("Number of symbols in tokens:")
print(len(tokens))
print("Number of symbols in chars:")
print(len(set(texto_ejemplo)))
print("Length of text",len(texto_ejemplo))
print("Texto original:", texto_ejemplo)
print("Spliter 贸ptimo:", spliter_optimo)
print("Frase tokenizada:", tokenized_sentence)
print("Length tokenized",len(tokenized_sentence))
print("Token Sentences", symb)
print("Lenght Token Sentence", len(symb))
print("Length Symbols Token Dictionary",len(set(symb)))
distances = processor.distances(symb)
print("Token Distances", distances)
print("Token Distance Length", len(distances))
print(gindex(distances,"cu"))
dic_str,enc_str = processor.from_distances(distances)
print(dic_str,enc_str)
class HuffmanNode:
def __init__(self, char: str, freq: int):
self.char = char
self.freq = freq
self.left = None
self.right = None
def __lt__(self, other):
return self.freq < other.freq
def build_huffman_tree(text: str) -> HuffmanNode:
frequency = Counter(text)
priority_queue = [HuffmanNode(char, freq) for char, freq in frequency.items()]
heapq.heapify(priority_queue)
while len(priority_queue) > 1:
left = heapq.heappop(priority_queue)
right = heapq.heappop(priority_queue)
merged_node = HuffmanNode(None, left.freq + right.freq)
merged_node.left = left
merged_node.right = right
heapq.heappush(priority_queue, merged_node)
return priority_queue[0]
def encode_huffman_tree(node: HuffmanNode, prefix: str = "") -> Dict[str, str]:
if node is None:
return {}
if node.char is not None:
return {node.char: prefix}
encoding = {}
encoding.update(encode_huffman_tree(node.left, prefix + "0"))
encoding.update(encode_huffman_tree(node.right, prefix + "1"))
return encoding
def huffman_encode(text: str) -> Tuple[Dict[str, str], bytes]:
root = build_huffman_tree(text)
encoding_map = encode_huffman_tree(root)
encoded_text = ''.join(encoding_map[char] for char in text)
# Asegurarse de que la longitud de la cadena codificada es m煤ltiplo de 8 para la conversi贸n a bytes
remainder = len(encoded_text) % 8
if remainder != 0:
encoded_text += '0' * (8 - remainder)
# Convertir la cadena binaria a bytes
encoded_bytes = bytes(int(encoded_text[i:i+8], 2) for i in range(0, len(encoded_text), 8))
return encoding_map, encoded_bytes
def huffman_decode(encoding_map: Dict[str, str], encoded_bytes: bytes) -> str:
# Convertir bytes a una cadena binaria
encoded_text = ''.join(format(byte, '08b') for byte in encoded_bytes)
decoding_map = {code: char for char, code in encoding_map.items()}
decoded_text = ""
current_code = ""
for bit in encoded_text:
current_code += bit
if current_code in decoding_map:
decoded_text += decoding_map[current_code]
current_code = ""
return decoded_text
def guardar_binarios_en_archivo(binarios: List[bytes], nombre_archivo: str):
with open(nombre_archivo, 'wb') as archivo:
for binario in binarios:
archivo.write(binario)
archivo.write(b'\n') # Separador entre los binarios
print(f"Datos binarios guardados en el archivo '{nombre_archivo}'")
# Ejemplo de uso
cadena1 = dic_str
cadena2 = enc_str
# Codificar cadena1 y cadena2
encoding_map1, encoded_bytes1 = huffman_encode(cadena1)
encoding_map2, encoded_bytes2 = huffman_encode(cadena2)
# Guardar binarios en un solo archivo
guardar_binarios_en_archivo([encoded_bytes1, encoded_bytes2], "text.txt.nos")