Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -40,6 +40,46 @@ def get_random_joke() -> str:
|
|
40 |
data = response.json()
|
41 |
return f"{data.get('setup')} - {data.get('punchline')}"
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
final_answer = FinalAnswerTool()
|
44 |
|
45 |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
@@ -55,14 +95,14 @@ custom_role_conversions=None,
|
|
55 |
|
56 |
|
57 |
# Import tool from Hub
|
58 |
-
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
59 |
|
60 |
with open("prompts.yaml", 'r') as stream:
|
61 |
prompt_templates = yaml.safe_load(stream)
|
62 |
|
63 |
agent = CodeAgent(
|
64 |
model=model,
|
65 |
-
tools=[final_answer,get_current_time_in_timezone,get_random_joke,
|
66 |
max_steps=6,
|
67 |
verbosity_level=1,
|
68 |
grammar=None,
|
|
|
40 |
data = response.json()
|
41 |
return f"{data.get('setup')} - {data.get('punchline')}"
|
42 |
|
43 |
+
@tool
|
44 |
+
def generate_flux_image(prompt: str, width: int = 1024, height: int = 1024, guidance_scale: float = 3.5, num_inference_steps: int = 28) -> str:
|
45 |
+
"""Generates an image using FLUX.1 text-to-image model.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
prompt: Text description of the image to generate
|
49 |
+
width: Width of the generated image (default: 1024)
|
50 |
+
height: Height of the generated image (default: 1024)
|
51 |
+
guidance_scale: How closely the image should follow the prompt (default: 3.5)
|
52 |
+
num_inference_steps: Number of denoising steps (default: 28)
|
53 |
+
"""
|
54 |
+
try:
|
55 |
+
from gradio_client import Client
|
56 |
+
import tempfile
|
57 |
+
import os
|
58 |
+
|
59 |
+
# Create a client for the FLUX model
|
60 |
+
client = Client("black-forest-labs/FLUX.1-dev")
|
61 |
+
|
62 |
+
# Call the model to generate an image
|
63 |
+
result = client.predict(
|
64 |
+
prompt=prompt,
|
65 |
+
seed=0,
|
66 |
+
randomize_seed=True,
|
67 |
+
width=width,
|
68 |
+
height=height,
|
69 |
+
guidance_scale=guidance_scale,
|
70 |
+
num_inference_steps=num_inference_steps,
|
71 |
+
api_name="/infer"
|
72 |
+
)
|
73 |
+
|
74 |
+
# The result is typically a path to an image
|
75 |
+
image_path = result
|
76 |
+
|
77 |
+
# You could return the path or handle the image as needed
|
78 |
+
return f"Image successfully generated based on prompt: '{prompt}'. Image path: {image_path}"
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
return f"Error generating image: {str(e)}"
|
82 |
+
|
83 |
final_answer = FinalAnswerTool()
|
84 |
|
85 |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
|
|
95 |
|
96 |
|
97 |
# Import tool from Hub
|
98 |
+
#image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
99 |
|
100 |
with open("prompts.yaml", 'r') as stream:
|
101 |
prompt_templates = yaml.safe_load(stream)
|
102 |
|
103 |
agent = CodeAgent(
|
104 |
model=model,
|
105 |
+
tools=[final_answer,get_current_time_in_timezone,get_random_joke,generate_flux_image], ## add your tools here (don't remove final answer)
|
106 |
max_steps=6,
|
107 |
verbosity_level=1,
|
108 |
grammar=None,
|