from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that does nothing yet Args: arg1: the first argument arg2: the second argument """ return "What magic will you build ?" @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" @tool def get_random_joke() -> str: """Gets a random joke from an open API.""" response = requests.get("https://official-joke-api.appspot.com/random_joke") data = response.json() return f"{data.get('setup')} - {data.get('punchline')}" @tool def generate_flux_image(prompt: str, width: int = 1024, height: int = 1024, guidance_scale: float = 3.5, num_inference_steps: int = 28) -> str: """Generates an image using FLUX.1 text-to-image model. Args: prompt: Text description of the image to generate width: Width of the generated image (default: 1024) height: Height of the generated image (default: 1024) guidance_scale: How closely the image should follow the prompt (default: 3.5) num_inference_steps: Number of denoising steps (default: 28) """ try: from gradio_client import Client import tempfile import os # Create a client for the FLUX model client = Client("black-forest-labs/FLUX.1-dev") # Call the model to generate an image result = client.predict( prompt=prompt, seed=0, randomize_seed=True, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, api_name="/infer" ) # The result is typically a path to an image image_path = result # You could return the path or handle the image as needed return f"Image successfully generated based on prompt: '{prompt}'. Image path: {image_path}" except Exception as e: return f"Error generating image: {str(e)}" final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, #model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud', custom_role_conversions=None, ) # Import tool from Hub #image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer,get_current_time_in_timezone,get_random_joke,generate_flux_image], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()