Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +12 -12
tasks/text.py
CHANGED
|
@@ -73,8 +73,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 73 |
# Load a pre-trained Sentence-BERT model
|
| 74 |
print("loading model")
|
| 75 |
model = SentenceTransformer('sentence-transformers/all-MPNET-base-v2', device='cpu')
|
| 76 |
-
|
| 77 |
-
sentence_embeddings = model.encode(test_dataset["quote"])
|
| 78 |
|
| 79 |
#load the models
|
| 80 |
with open("xgb_bin.pkl","rb") as f:
|
|
@@ -84,18 +83,16 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 84 |
xgb_multi = pickle.load(f)
|
| 85 |
|
| 86 |
|
| 87 |
-
# Load the binary model
|
| 88 |
-
#xgb_bin = xgb.Booster()
|
| 89 |
-
#xgb_bin.load_model("xgb_model_bin.bin")
|
| 90 |
-
|
| 91 |
-
# Load the binary model
|
| 92 |
-
#xgb_multi = xgb.Booster()
|
| 93 |
-
#xgb_multi.load_model("xgb_model_muli.bin")
|
| 94 |
|
| 95 |
|
| 96 |
|
|
|
|
| 97 |
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
X_train = sentence_embeddings.copy()
|
| 100 |
|
| 101 |
y_train = np.array(test_dataset["label"].copy())
|
|
@@ -105,9 +102,12 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 105 |
y_train_binary[y_train_binary != 0] = 1
|
| 106 |
|
| 107 |
|
|
|
|
|
|
|
|
|
|
| 108 |
#multi class
|
| 109 |
X_train_multi = X_train[y_train != 0]
|
| 110 |
-
|
| 111 |
y_train_multi = y_train[y_train != 0]
|
| 112 |
|
| 113 |
logging.info(f"Xtrain_multi_shape:{X_train_multi.shape}")
|
|
@@ -125,7 +125,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 125 |
logging.info(f"y_pred_bin:{y_pred_bin.shape}")
|
| 126 |
logging.info(f"y_pred_multi shape:{y_pred_multi.shape}")
|
| 127 |
|
| 128 |
-
y_pred_bin[
|
| 129 |
|
| 130 |
|
| 131 |
|
|
|
|
| 73 |
# Load a pre-trained Sentence-BERT model
|
| 74 |
print("loading model")
|
| 75 |
model = SentenceTransformer('sentence-transformers/all-MPNET-base-v2', device='cpu')
|
| 76 |
+
|
|
|
|
| 77 |
|
| 78 |
#load the models
|
| 79 |
with open("xgb_bin.pkl","rb") as f:
|
|
|
|
| 83 |
xgb_multi = pickle.load(f)
|
| 84 |
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
|
| 88 |
|
| 89 |
+
logging.info("generating embedding")
|
| 90 |
|
| 91 |
+
# Generate sentence embeddings
|
| 92 |
+
sentence_embeddings = model.encode(test_dataset["quote"])
|
| 93 |
+
logging.info(" embedding done")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
X_train = sentence_embeddings.copy()
|
| 97 |
|
| 98 |
y_train = np.array(test_dataset["label"].copy())
|
|
|
|
| 102 |
y_train_binary[y_train_binary != 0] = 1
|
| 103 |
|
| 104 |
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
#multi class
|
| 109 |
X_train_multi = X_train[y_train != 0]
|
| 110 |
+
|
| 111 |
y_train_multi = y_train[y_train != 0]
|
| 112 |
|
| 113 |
logging.info(f"Xtrain_multi_shape:{X_train_multi.shape}")
|
|
|
|
| 125 |
logging.info(f"y_pred_bin:{y_pred_bin.shape}")
|
| 126 |
logging.info(f"y_pred_multi shape:{y_pred_multi.shape}")
|
| 127 |
|
| 128 |
+
y_pred_bin[y_train==1] = y_pred_multi
|
| 129 |
|
| 130 |
|
| 131 |
|