File size: 14,316 Bytes
a13c2bb c96734b 1ca78b8 5e9023b c96734b 9918749 a13c2bb 1ca78b8 5e9023b 9918749 5e9023b a13c2bb 1ca78b8 81d1619 5e9023b 81d1619 5e9023b 9918749 5e9023b 9918749 a13c2bb 5e9023b 32ae536 81d1619 9144903 5e9023b 9918749 5e9023b 9144903 9918749 1ca78b8 5e9023b cef7f39 25f51d0 9918749 25f51d0 5e9023b cef7f39 25f51d0 5e9023b 9918749 81d1619 5e9023b 25f51d0 5e9023b a13c2bb 5e9023b 81d1619 9918749 32ae536 5e9023b 3e6631d 5e9023b 81d1619 5e9023b 81d1619 5e9023b 81d1619 5e9023b 32ae536 5e9023b 32ae536 5e9023b 32ae536 5e9023b 32ae536 82deaf2 9918749 c96734b 9918749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import os
import gradio as gr
import requests
import json
import base64
from PIL import Image
import io
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# API key
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Model list with context sizes
MODELS = [
# Vision Models
("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("Qwen: Qwen2.5 VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
# Gemini Models
("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 40960),
# Llama Models
("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 8000),
("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 20000),
("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 131072),
("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 131072),
("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 8192),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
# DeepSeek Models
("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 163840),
("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 163840),
("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 131072),
("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-v3-0324:free", 131072),
("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 131072),
("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
# Gemma Models
("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 96000),
("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 131072),
("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 131072),
("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 32768),
("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 8192),
# Mistral Models
("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 128000),
("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 32768),
("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 8192),
# Qwen Models
("Qwen: Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 32768),
("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 40000),
("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 16384),
("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 32768),
("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 8192),
# Other Models
("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 8192),
("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 8192),
("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 8192),
("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 8192),
("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 32768),
("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 32768),
("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 32768),
("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 32768),
("Qwerky 72b (free)", "featherless/qwerky-72b:free", 32768),
("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 32768),
("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 32768),
("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 4096),
("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 4096),
("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 4096),
("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 4096),
("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 4096),
]
def format_to_message_dict(history):
"""Convert history to proper message format"""
messages = []
for pair in history:
if len(pair) == 2:
human, ai = pair
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
return messages
def encode_image_to_base64(image_path):
"""Encode an image file to base64 string"""
try:
if isinstance(image_path, str): # File path as string
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension == "jpg" or file_extension == "jpeg":
mime_type = "image/jpeg"
return f"data:{mime_type};base64,{encoded_string}"
else: # Pillow Image or file-like object
buffered = io.BytesIO()
image_path.save(buffered, format="PNG")
encoded_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
return f"data:image/png;base64,{encoded_string}"
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
return None
def prepare_message_with_images(text, images):
"""Prepare a message with text and images"""
if not images:
return text
content = [{"type": "text", "text": text}]
for img in images:
if img is None:
continue
encoded_image = encode_image_to_base64(img)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
return content
def ask_ai(message, chatbot, model_choice, temperature, max_tokens, uploaded_files):
"""Enhanced AI query function with file upload support and detailed logging"""
if not message.strip() and not uploaded_files:
return chatbot, ""
# Get model ID and context size
model_id = None
context_size = 0
for name, model_id_value, ctx_size in MODELS:
if name == model_choice:
model_id = model_id_value
context_size = ctx_size
break
if model_id is None:
logger.error(f"Model not found: {model_choice}")
return chatbot + [[message, "Error: Model not found"]], ""
# Create messages from chatbot history
messages = format_to_message_dict(chatbot)
# Prepare message with images if any
if uploaded_files:
content = prepare_message_with_images(message, uploaded_files)
else:
content = message
# Add current message
messages.append({"role": "user", "content": content})
# Call API
try:
logger.info(f"Sending request to model: {model_id}")
logger.info(f"Messages: {json.dumps(messages)}")
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
logger.info(f"Request payload: {json.dumps(payload)}")
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces"
},
json=payload,
timeout=60
)
logger.info(f"Response status: {response.status_code}")
logger.info(f"Response headers: {response.headers}")
response_text = response.text
logger.info(f"Response body: {response_text}")
if response.status_code == 200:
result = response.json()
ai_response = result.get("choices", [{}])[0].get("message", {}).get("content", "")
chatbot = chatbot + [[message, ai_response]]
# Log token usage if available
if "usage" in result:
logger.info(f"Token usage: {result['usage']}")
else:
error_message = f"Error: Status code {response.status_code}\n\nResponse: {response_text}"
chatbot = chatbot + [[message, error_message]]
except Exception as e:
logger.error(f"Exception during API call: {str(e)}")
chatbot = chatbot + [[message, f"Error: {str(e)}"]]
return chatbot, ""
def clear_chat():
return [], "", [], 0.7, 1000
# Create enhanced interface
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown("""
# Enhanced AI Chat
This interface allows you to chat with various free AI models from OpenRouter.
You can upload images for vision-capable models and adjust parameters.
""")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(height=500, show_copy_button=True, show_label=False)
with gr.Row():
message = gr.Textbox(
placeholder="Type your message here...",
label="Message",
lines=2
)
with gr.Row():
with gr.Column(scale=3):
submit_btn = gr.Button("Send", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Row():
uploaded_files = gr.Gallery(
label="Uploaded Images",
show_label=True,
elem_id="gallery",
columns=4,
height=150,
visible=False
)
with gr.Row():
upload_btn = gr.UploadButton(
label="Upload Images (for vision models)",
file_types=["image"],
file_count="multiple"
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Model Selection")
model_names = [name for name, _, _ in MODELS]
model_choice = gr.Radio(
model_names,
value=model_names[0],
label="Choose a Model"
)
with gr.Accordion("Model Context", open=False):
context_info = gr.HTML(value="<p>Select a model to see its context window</p>")
with gr.Accordion("Parameters", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
# Set up context window display
def update_context_info(model_name):
for name, _, ctx_size in MODELS:
if name == model_name:
return f"<p><b>Context window:</b> {ctx_size:,} tokens</p>"
return "<p>Model information not found</p>"
model_choice.change(
fn=update_context_info,
inputs=[model_choice],
outputs=[context_info]
)
# Process uploaded files
def process_uploaded_files(files):
file_paths = [file.name for file in files]
return file_paths, gr.update(visible=True)
upload_btn.upload(
fn=process_uploaded_files,
inputs=[upload_btn],
outputs=[uploaded_files, uploaded_files]
)
# Set up events
submit_btn.click(
fn=ask_ai,
inputs=[message, chatbot, model_choice, temperature, max_tokens, uploaded_files],
outputs=[chatbot, message]
)
message.submit(
fn=ask_ai,
inputs=[message, chatbot, model_choice, temperature, max_tokens, uploaded_files],
outputs=[chatbot, message]
)
clear_btn.click(
fn=clear_chat,
inputs=[],
outputs=[chatbot, message, uploaded_files, temperature, max_tokens]
)
# Launch directly with Gradio's built-in server
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |