File size: 14,316 Bytes
a13c2bb
c96734b
1ca78b8
 
5e9023b
 
 
 
 
 
 
 
c96734b
9918749
a13c2bb
1ca78b8
5e9023b
9918749
5e9023b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
1ca78b8
81d1619
 
 
 
 
 
 
 
 
 
 
 
5e9023b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d1619
 
5e9023b
 
 
 
9918749
 
5e9023b
9918749
a13c2bb
5e9023b
 
 
 
32ae536
81d1619
9144903
5e9023b
 
 
 
 
 
9918749
5e9023b
9144903
9918749
1ca78b8
5e9023b
 
 
 
 
 
 
 
 
 
 
 
cef7f39
 
25f51d0
 
 
9918749
25f51d0
5e9023b
cef7f39
 
25f51d0
5e9023b
 
 
 
 
 
9918749
 
 
81d1619
5e9023b
 
 
 
25f51d0
5e9023b
 
a13c2bb
5e9023b
81d1619
9918749
32ae536
 
 
5e9023b
3e6631d
5e9023b
 
 
 
81d1619
5e9023b
 
 
81d1619
 
5e9023b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d1619
5e9023b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ae536
 
 
 
5e9023b
32ae536
 
 
 
 
5e9023b
32ae536
 
 
 
 
 
5e9023b
32ae536
82deaf2
9918749
c96734b
9918749
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
import gradio as gr
import requests
import json
import base64
from PIL import Image
import io
import logging

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# API key
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")

# Model list with context sizes
MODELS = [
    # Vision Models
    ("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
    ("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
    ("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
    ("Qwen: Qwen2.5 VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
    ("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
    
    # Gemini Models
    ("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
    ("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
    ("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
    ("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 1048576),
    ("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
    ("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
    ("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 40960),
    
    # Llama Models
    ("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 8000),
    ("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 20000),
    ("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 131072),
    ("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 131072),
    ("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 8192),
    ("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
    
    # DeepSeek Models
    ("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 163840),
    ("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 163840),
    ("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 131072),
    ("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-v3-0324:free", 131072),
    ("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 131072),
    ("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
    ("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
    ("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
    
    # Gemma Models
    ("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 96000),
    ("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 131072),
    ("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 131072),
    ("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 32768),
    ("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 8192),
    
    # Mistral Models
    ("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 128000),
    ("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
    ("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 32768),
    ("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 8192),
    
    # Qwen Models
    ("Qwen: Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 32768),
    ("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 40000),
    ("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 16384),
    ("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 32768),
    ("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 8192),
    
    # Other Models
    ("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
    ("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 8192),
    ("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 8192),
    ("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 8192),
    ("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 8192),
    ("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 32768),
    ("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 32768),
    ("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 32768),
    ("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 32768),
    ("Qwerky 72b (free)", "featherless/qwerky-72b:free", 32768),
    ("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 32768),
    ("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 32768),
    ("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 4096),
    ("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 4096),
    ("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 4096),
    ("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 4096),
    ("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 4096),
]

def format_to_message_dict(history):
    """Convert history to proper message format"""
    messages = []
    for pair in history:
        if len(pair) == 2:
            human, ai = pair
            if human:
                messages.append({"role": "user", "content": human})
            if ai:
                messages.append({"role": "assistant", "content": ai})
    return messages

def encode_image_to_base64(image_path):
    """Encode an image file to base64 string"""
    try:
        if isinstance(image_path, str):  # File path as string
            with open(image_path, "rb") as image_file:
                encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
                file_extension = image_path.split('.')[-1].lower()
                mime_type = f"image/{file_extension}"
                if file_extension == "jpg" or file_extension == "jpeg":
                    mime_type = "image/jpeg"
                return f"data:{mime_type};base64,{encoded_string}"
        else:  # Pillow Image or file-like object
            buffered = io.BytesIO()
            image_path.save(buffered, format="PNG")
            encoded_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
            return f"data:image/png;base64,{encoded_string}"
    except Exception as e:
        logger.error(f"Error encoding image: {str(e)}")
        return None

def prepare_message_with_images(text, images):
    """Prepare a message with text and images"""
    if not images:
        return text
    
    content = [{"type": "text", "text": text}]
    
    for img in images:
        if img is None:
            continue
        
        encoded_image = encode_image_to_base64(img)
        if encoded_image:
            content.append({
                "type": "image_url",
                "image_url": {"url": encoded_image}
            })
    
    return content

def ask_ai(message, chatbot, model_choice, temperature, max_tokens, uploaded_files):
    """Enhanced AI query function with file upload support and detailed logging"""
    if not message.strip() and not uploaded_files:
        return chatbot, ""
    
    # Get model ID and context size
    model_id = None
    context_size = 0
    for name, model_id_value, ctx_size in MODELS:
        if name == model_choice:
            model_id = model_id_value
            context_size = ctx_size
            break
    
    if model_id is None:
        logger.error(f"Model not found: {model_choice}")
        return chatbot + [[message, "Error: Model not found"]], ""
    
    # Create messages from chatbot history
    messages = format_to_message_dict(chatbot)
    
    # Prepare message with images if any
    if uploaded_files:
        content = prepare_message_with_images(message, uploaded_files)
    else:
        content = message
    
    # Add current message
    messages.append({"role": "user", "content": content})
    
    # Call API
    try:
        logger.info(f"Sending request to model: {model_id}")
        logger.info(f"Messages: {json.dumps(messages)}")
        
        payload = {
            "model": model_id,
            "messages": messages,
            "temperature": temperature,
            "max_tokens": max_tokens
        }
        
        logger.info(f"Request payload: {json.dumps(payload)}")
        
        response = requests.post(
            "https://openrouter.ai/api/v1/chat/completions",
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {OPENROUTER_API_KEY}",
                "HTTP-Referer": "https://huggingface.co/spaces"
            },
            json=payload,
            timeout=60
        )
        
        logger.info(f"Response status: {response.status_code}")
        logger.info(f"Response headers: {response.headers}")
        
        response_text = response.text
        logger.info(f"Response body: {response_text}")
        
        if response.status_code == 200:
            result = response.json()
            ai_response = result.get("choices", [{}])[0].get("message", {}).get("content", "")
            chatbot = chatbot + [[message, ai_response]]
            
            # Log token usage if available
            if "usage" in result:
                logger.info(f"Token usage: {result['usage']}")
        else:
            error_message = f"Error: Status code {response.status_code}\n\nResponse: {response_text}"
            chatbot = chatbot + [[message, error_message]]
    except Exception as e:
        logger.error(f"Exception during API call: {str(e)}")
        chatbot = chatbot + [[message, f"Error: {str(e)}"]]
    
    return chatbot, ""

def clear_chat():
    return [], "", [], 0.7, 1000

# Create enhanced interface
with gr.Blocks(css="footer {visibility: hidden}") as demo:
    gr.Markdown("""
    # Enhanced AI Chat
    
    This interface allows you to chat with various free AI models from OpenRouter.
    You can upload images for vision-capable models and adjust parameters.
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(height=500, show_copy_button=True, show_label=False)
            
            with gr.Row():
                message = gr.Textbox(
                    placeholder="Type your message here...",
                    label="Message",
                    lines=2
                )
            
            with gr.Row():
                with gr.Column(scale=3):
                    submit_btn = gr.Button("Send", variant="primary")
                
                with gr.Column(scale=1):
                    clear_btn = gr.Button("Clear Chat", variant="secondary")
            
            with gr.Row():
                uploaded_files = gr.Gallery(
                    label="Uploaded Images", 
                    show_label=True, 
                    elem_id="gallery",
                    columns=4, 
                    height=150,
                    visible=False
                )
            
            with gr.Row():
                upload_btn = gr.UploadButton(
                    label="Upload Images (for vision models)",
                    file_types=["image"],
                    file_count="multiple"
                )
        
        with gr.Column(scale=1):
            with gr.Group():
                gr.Markdown("### Model Selection")
                model_names = [name for name, _, _ in MODELS]
                model_choice = gr.Radio(
                    model_names,
                    value=model_names[0],
                    label="Choose a Model"
                )
                
                with gr.Accordion("Model Context", open=False):
                    context_info = gr.HTML(value="<p>Select a model to see its context window</p>")
            
            with gr.Accordion("Parameters", open=False):
                temperature = gr.Slider(
                    minimum=0.1, 
                    maximum=2.0, 
                    value=0.7, 
                    step=0.1,
                    label="Temperature"
                )
                
                max_tokens = gr.Slider(
                    minimum=100, 
                    maximum=4000, 
                    value=1000, 
                    step=100,
                    label="Max Tokens"
                )
    
    # Set up context window display
    def update_context_info(model_name):
        for name, _, ctx_size in MODELS:
            if name == model_name:
                return f"<p><b>Context window:</b> {ctx_size:,} tokens</p>"
        return "<p>Model information not found</p>"
    
    model_choice.change(
        fn=update_context_info,
        inputs=[model_choice],
        outputs=[context_info]
    )
    
    # Process uploaded files
    def process_uploaded_files(files):
        file_paths = [file.name for file in files]
        return file_paths, gr.update(visible=True)
    
    upload_btn.upload(
        fn=process_uploaded_files,
        inputs=[upload_btn],
        outputs=[uploaded_files, uploaded_files]
    )
    
    # Set up events
    submit_btn.click(
        fn=ask_ai,
        inputs=[message, chatbot, model_choice, temperature, max_tokens, uploaded_files],
        outputs=[chatbot, message]
    )
    
    message.submit(
        fn=ask_ai,
        inputs=[message, chatbot, model_choice, temperature, max_tokens, uploaded_files],
        outputs=[chatbot, message]
    )
    
    clear_btn.click(
        fn=clear_chat,
        inputs=[],
        outputs=[chatbot, message, uploaded_files, temperature, max_tokens]
    )

# Launch directly with Gradio's built-in server
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)