File size: 16,500 Bytes
a13c2bb c96734b 1ca78b8 5e307e7 a13c2bb 5e307e7 c96734b a13c2bb 1ca78b8 9144903 a13c2bb 1ca78b8 9144903 a13c2bb 5e307e7 a13c2bb 3e6631d 9144903 a13c2bb 9144903 a13c2bb 1ca78b8 5e307e7 3e6631d 1ca78b8 a13c2bb 9144903 1ca78b8 9144903 5e307e7 9144903 5e307e7 9144903 3e6631d 9144903 3e6631d 9144903 3e6631d a13c2bb 1ca78b8 5e307e7 3e6631d 1ca78b8 9144903 a13c2bb 1ca78b8 3e6631d a13c2bb 9144903 a13c2bb 3e6631d 9144903 a13c2bb 9144903 3e6631d a13c2bb 9144903 a13c2bb 9144903 a13c2bb 3e6631d 9144903 3e6631d 9144903 a13c2bb 9144903 3e6631d 9144903 a13c2bb 9144903 a13c2bb 9144903 a13c2bb 9144903 1ca78b8 9144903 3e6631d a13c2bb 9144903 5e307e7 9144903 3e6631d 9144903 3e6631d 9144903 3e6631d 9144903 5e307e7 a13c2bb 9144903 3e6631d 82deaf2 9144903 c96734b 9144903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import os
import base64
import gradio as gr
import requests
import json
from io import BytesIO
from PIL import Image
import time
# Get API key from environment variable for security
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Model information
free_models = [
("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 0, 0, 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 0, 0, 1048576),
("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 0, 0, 1048576),
("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 0, 0, 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 0, 0, 1000000),
("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 0, 0, 163840),
("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 0, 0, 163840),
("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-chat-v3-0324:free", 0, 0, 131072),
("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 0, 0, 131072),
("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 0, 0, 131072),
("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 0, 0, 131072),
("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 0, 0, 131072),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 0, 0, 131072),
("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 0, 0, 131072),
("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 0, 0, 128000),
("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 0, 0, 96000),
("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 0, 0, 96000),
("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 0, 0, 64000),
("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 0, 0, 64000),
("Qwen: Qwen2.5-VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 0, 0, 64000),
("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 0, 0, 40960),
("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 0, 0, 40000),
("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 0, 0, 40000),
("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 0, 0, 32768),
("Qwerky 72b (free)", "featherless/qwerky-72b:free", 0, 0, 32768),
("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 0, 0, 32768),
("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 0, 0, 32768),
("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 0, 0, 32768),
("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 0, 0, 32768),
("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 0, 0, 32768),
("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 0, 0, 32768),
("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 0, 0, 32768),
("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 0, 0, 32768),
("Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 0, 0, 32768),
("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 0, 0, 20000),
("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 0, 0, 16384),
("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 0, 0, 16000),
("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 0, 0, 8192),
("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 0, 0, 8192),
("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 0, 0, 8192),
("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 0, 0, 8192),
("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 0, 0, 8192),
("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 0, 0, 8192),
("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 0, 0, 8192),
("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 0, 0, 8192),
("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 0, 0, 8000),
("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 0, 0, 4096),
("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 0, 0, 4096),
("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 0, 0, 4096),
("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 0, 0, 4096),
("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 0, 0, 4096),
]
# Helper functions
def encode_image(image):
"""Convert PIL Image to base64 string"""
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def encode_file(file_path):
"""Convert text file to string"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
return f"Error reading file: {str(e)}"
def process_api_call(messages, model_id, temperature=0.7, top_p=1.0, max_tokens=1000, stream=False):
"""Make API call to OpenRouter"""
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces",
}
url = "https://openrouter.ai/api/v1/chat/completions"
data = {
"model": model_id,
"messages": messages,
"stream": stream,
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens
}
return requests.post(url, headers=headers, json=data, stream=stream)
def update_conversation(message, chat_history, model_choice, uploaded_image=None, uploaded_file=None,
temp=0.7, top_p=1.0, max_tokens=1000, stream_response=False):
"""Update conversation with new message"""
# Get model ID from model_choice
model_id = None
for name, model_id_value, *_ in free_models:
if name == model_choice or model_id_value == model_choice:
model_id = model_id_value
break
if not model_id:
# Fallback to a default model
model_id = "google/gemini-2.0-pro-exp-02-05:free"
# Build messages array from chat history
messages = []
for msg in chat_history:
if isinstance(msg, dict):
messages.append(msg)
elif isinstance(msg, tuple) and len(msg) == 2:
# Handle legacy tuple format
user_msg, ai_msg = msg
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": ai_msg})
# Prepare the new user message
content = message
# Handle file attachment
if uploaded_file:
file_content = encode_file(uploaded_file)
content = f"{message}\n\nFile content:\n```\n{file_content}\n```"
# Handle image
if uploaded_image:
base64_image = encode_image(uploaded_image)
image_content = [
{"type": "text", "text": content},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": image_content})
else:
messages.append({"role": "user", "content": content})
# Add message to chat history
user_message = {"role": "user", "content": content}
assistant_message = {"role": "assistant", "content": ""}
chat_history.append(user_message)
chat_history.append(assistant_message)
try:
if stream_response:
# Handle streaming response
response = process_api_call(messages, model_id, temp, top_p, max_tokens, stream=True)
full_response = ""
buffer = ""
for chunk in response.iter_content(chunk_size=1024, decode_unicode=False):
if chunk:
buffer += chunk.decode('utf-8')
while True:
line_end = buffer.find('\n')
if line_end == -1:
break
line = buffer[:line_end].strip()
buffer = buffer[line_end + 1:]
if line.startswith('data: '):
data = line[6:]
if data == '[DONE]':
break
try:
data_obj = json.loads(data)
delta_content = data_obj["choices"][0]["delta"].get("content", "")
if delta_content:
full_response += delta_content
# Update the assistant message
chat_history[-1]["content"] = full_response
yield chat_history
except json.JSONDecodeError:
pass
else:
# Handle non-streaming response
response = process_api_call(messages, model_id, temp, top_p, max_tokens, stream=False)
response.raise_for_status()
result = response.json()
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
chat_history[-1]["content"] = reply
yield chat_history
except Exception as e:
error_msg = f"Error: {str(e)}"
chat_history[-1]["content"] = error_msg
yield chat_history
# Create simpler UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🔆 CrispChat - OpenRouter AI Models")
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_share_button=False,
layout="bubble",
avatar_images=("👤", "🤖"),
type="messages"
)
with gr.Row():
user_message = gr.Textbox(
placeholder="Type your message here...",
show_label=False,
lines=3
)
with gr.Row():
with gr.Column(scale=1):
image_upload = gr.Image(
type="pil",
label="Upload Image",
show_label=True
)
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Text File",
file_types=[".txt", ".md", ".py", ".js", ".html", ".css", ".json"]
)
with gr.Column(scale=1):
submit_btn = gr.Button("Send", variant="primary")
with gr.Column(scale=2):
with gr.Accordion("Model Settings", open=True):
model_selector = gr.Dropdown(
choices=[name for name, _ in free_models],
value=free_models[0][0],
label="Select Model"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=1.0,
step=0.1,
label="Top P"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
streaming = gr.Checkbox(
label="Enable Streaming",
value=True
)
clear_btn = gr.Button("Clear Chat")
# Set up event handlers
msg_submit_event = user_message.submit(
fn=update_conversation,
inputs=[
user_message,
chatbot,
model_selector,
image_upload,
file_upload,
temperature,
top_p,
max_tokens,
streaming
],
outputs=chatbot
)
btn_submit_event = submit_btn.click(
fn=update_conversation,
inputs=[
user_message,
chatbot,
model_selector,
image_upload,
file_upload,
temperature,
top_p,
max_tokens,
streaming
],
outputs=chatbot
)
# Clear chat
clear_btn.click(
fn=lambda: [],
outputs=[chatbot]
)
# Clear input after submission
msg_submit_event.then(
fn=lambda: "",
outputs=[user_message]
)
btn_submit_event.then(
fn=lambda: "",
outputs=[user_message]
)
# Mount FastAPI for external access
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class GenerateRequest(BaseModel):
message: str
model: str = None
image_data: str = None
@app.post("/api/generate")
async def api_generate(request: GenerateRequest):
"""API endpoint for generating responses"""
try:
# Process request
messages = [{"role": "user", "content": request.message}]
# Handle image if provided
if request.image_data:
try:
image_bytes = base64.b64decode(request.image_data)
image = Image.open(BytesIO(image_bytes))
base64_image = encode_image(image)
messages = [{
"role": "user",
"content": [
{"type": "text", "text": request.message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}]
except Exception as e:
return {"error": f"Image processing error: {str(e)}"}
# Get model
model_id = request.model or free_models[0][1]
# Make API call
response = process_api_call(messages, model_id, stream=False)
response.raise_for_status()
result = response.json()
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
return {"response": reply}
except Exception as e:
return {"error": f"Error: {str(e)}"}
# Mount Gradio app
app = gr.mount_gradio_app(app, demo, path="/")
# Launch the app
if __name__ == "__main__":
demo.launch() |