File size: 16,500 Bytes
a13c2bb
 
c96734b
1ca78b8
 
5e307e7
a13c2bb
5e307e7
c96734b
a13c2bb
 
1ca78b8
9144903
a13c2bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca78b8
9144903
a13c2bb
 
 
5e307e7
a13c2bb
 
3e6631d
 
 
 
 
 
 
 
9144903
 
a13c2bb
 
 
9144903
a13c2bb
 
 
 
 
1ca78b8
5e307e7
3e6631d
 
 
 
1ca78b8
a13c2bb
9144903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca78b8
9144903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e307e7
9144903
 
 
5e307e7
 
9144903
 
 
 
 
 
 
 
 
 
3e6631d
9144903
 
3e6631d
 
9144903
 
 
3e6631d
a13c2bb
1ca78b8
5e307e7
3e6631d
 
1ca78b8
9144903
 
 
a13c2bb
1ca78b8
3e6631d
a13c2bb
9144903
a13c2bb
 
3e6631d
 
9144903
a13c2bb
 
 
9144903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6631d
a13c2bb
9144903
 
 
 
 
a13c2bb
9144903
 
 
a13c2bb
3e6631d
9144903
 
 
 
 
 
 
3e6631d
9144903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
9144903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6631d
 
9144903
 
 
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
 
9144903
 
 
 
 
a13c2bb
9144903
 
 
 
a13c2bb
 
9144903
 
 
1ca78b8
 
9144903
 
3e6631d
 
 
 
 
 
 
 
 
 
 
a13c2bb
 
9144903
 
5e307e7
9144903
 
3e6631d
9144903
3e6631d
 
9144903
 
 
 
 
 
 
 
 
 
3e6631d
9144903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e307e7
a13c2bb
9144903
3e6631d
 
 
82deaf2
9144903
c96734b
9144903
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
import base64
import gradio as gr
import requests
import json
from io import BytesIO
from PIL import Image
import time

# Get API key from environment variable for security
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")


# Model information
free_models = [
    ("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 0, 0, 2000000),
    ("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 0, 0, 1048576),
    ("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 0, 0, 1048576),
    ("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 0, 0, 1000000),
    ("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 0, 0, 1000000),
    ("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 0, 0, 163840),
    ("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 0, 0, 163840),
    ("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 0, 0, 131072),
    ("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-chat-v3-0324:free", 0, 0, 131072),
    ("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 0, 0, 131072),
    ("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 0, 0, 131072),
    ("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 0, 0, 131072),
    ("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 0, 0, 131072),
    ("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 0, 0, 131072),
    ("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 0, 0, 131072),
    ("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 0, 0, 131072),
    ("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 0, 0, 131072),
    ("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 0, 0, 131072),
    ("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 0, 0, 128000),
    ("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 0, 0, 96000),
    ("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 0, 0, 96000),
    ("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 0, 0, 64000),
    ("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 0, 0, 64000),
    ("Qwen: Qwen2.5-VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 0, 0, 64000),
    ("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 0, 0, 40960),
    ("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 0, 0, 40000),
    ("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 0, 0, 40000),
    ("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 0, 0, 32768),
    ("Qwerky 72b (free)", "featherless/qwerky-72b:free", 0, 0, 32768),
    ("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 0, 0, 32768),
    ("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 0, 0, 32768),
    ("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 0, 0, 32768),
    ("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 0, 0, 32768),
    ("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 0, 0, 32768),
    ("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 0, 0, 32768),
    ("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 0, 0, 32768),
    ("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 0, 0, 32768),
    ("Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 0, 0, 32768),
    ("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 0, 0, 20000),
    ("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 0, 0, 16384),
    ("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 0, 0, 16000),
    ("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 0, 0, 8192),
    ("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 0, 0, 8192),
    ("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 0, 0, 8192),
    ("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 0, 0, 8192),
    ("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 0, 0, 8192),
    ("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 0, 0, 8192),
    ("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 0, 0, 8192),
    ("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 0, 0, 8192),
    ("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 0, 0, 8192),
    ("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 0, 0, 8192),
    ("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 0, 0, 8000),
    ("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 0, 0, 4096),
    ("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 0, 0, 4096),
    ("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 0, 0, 4096),
    ("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 0, 0, 4096),
    ("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 0, 0, 4096),
]

# Helper functions
def encode_image(image):
    """Convert PIL Image to base64 string"""
    buffered = BytesIO()
    image.save(buffered, format="JPEG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")

def encode_file(file_path):
    """Convert text file to string"""
    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            return file.read()
    except Exception as e:
        return f"Error reading file: {str(e)}"

def process_api_call(messages, model_id, temperature=0.7, top_p=1.0, max_tokens=1000, stream=False):
    """Make API call to OpenRouter"""
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {OPENROUTER_API_KEY}",
        "HTTP-Referer": "https://huggingface.co/spaces",
    }
    
    url = "https://openrouter.ai/api/v1/chat/completions"
    
    data = {
        "model": model_id,
        "messages": messages,
        "stream": stream,
        "temperature": temperature,
        "top_p": top_p,
        "max_tokens": max_tokens
    }
    
    return requests.post(url, headers=headers, json=data, stream=stream)

def update_conversation(message, chat_history, model_choice, uploaded_image=None, uploaded_file=None, 
                      temp=0.7, top_p=1.0, max_tokens=1000, stream_response=False):
    """Update conversation with new message"""
    # Get model ID from model_choice
    model_id = None
    for name, model_id_value, *_ in free_models:
        if name == model_choice or model_id_value == model_choice:
            model_id = model_id_value
            break
    
    if not model_id:
        # Fallback to a default model
        model_id = "google/gemini-2.0-pro-exp-02-05:free"
    
    # Build messages array from chat history
    messages = []
    for msg in chat_history:
        if isinstance(msg, dict):
            messages.append(msg)
        elif isinstance(msg, tuple) and len(msg) == 2:
            # Handle legacy tuple format
            user_msg, ai_msg = msg
            messages.append({"role": "user", "content": user_msg})
            messages.append({"role": "assistant", "content": ai_msg})
    
    # Prepare the new user message
    content = message
    
    # Handle file attachment
    if uploaded_file:
        file_content = encode_file(uploaded_file)
        content = f"{message}\n\nFile content:\n```\n{file_content}\n```"
    
    # Handle image
    if uploaded_image:
        base64_image = encode_image(uploaded_image)
        image_content = [
            {"type": "text", "text": content},
            {
                "type": "image_url",
                "image_url": {
                    "url": f"data:image/jpeg;base64,{base64_image}"
                }
            }
        ]
        messages.append({"role": "user", "content": image_content})
    else:
        messages.append({"role": "user", "content": content})
    
    # Add message to chat history
    user_message = {"role": "user", "content": content}
    assistant_message = {"role": "assistant", "content": ""}
    chat_history.append(user_message)
    chat_history.append(assistant_message)
    
    try:
        if stream_response:
            # Handle streaming response
            response = process_api_call(messages, model_id, temp, top_p, max_tokens, stream=True)
            
            full_response = ""
            buffer = ""
            
            for chunk in response.iter_content(chunk_size=1024, decode_unicode=False):
                if chunk:
                    buffer += chunk.decode('utf-8')
                    
                    while True:
                        line_end = buffer.find('\n')
                        if line_end == -1:
                            break
                            
                        line = buffer[:line_end].strip()
                        buffer = buffer[line_end + 1:]
                        
                        if line.startswith('data: '):
                            data = line[6:]
                            if data == '[DONE]':
                                break
                                
                            try:
                                data_obj = json.loads(data)
                                delta_content = data_obj["choices"][0]["delta"].get("content", "")
                                if delta_content:
                                    full_response += delta_content
                                    # Update the assistant message
                                    chat_history[-1]["content"] = full_response
                                    yield chat_history
                            except json.JSONDecodeError:
                                pass
        else:
            # Handle non-streaming response
            response = process_api_call(messages, model_id, temp, top_p, max_tokens, stream=False)
            response.raise_for_status()
            result = response.json()
            
            reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
            chat_history[-1]["content"] = reply
            yield chat_history
    
    except Exception as e:
        error_msg = f"Error: {str(e)}"
        chat_history[-1]["content"] = error_msg
        yield chat_history

# Create simpler UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🔆 CrispChat - OpenRouter AI Models")
    
    with gr.Row():
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(
                height=500,
                show_copy_button=True,
                show_share_button=False,
                layout="bubble",
                avatar_images=("👤", "🤖"),
                type="messages"
            )
            
            with gr.Row():
                user_message = gr.Textbox(
                    placeholder="Type your message here...",
                    show_label=False,
                    lines=3
                )
                
            with gr.Row():
                with gr.Column(scale=1):
                    image_upload = gr.Image(
                        type="pil", 
                        label="Upload Image",
                        show_label=True
                    )
                
                with gr.Column(scale=1):
                    file_upload = gr.File(
                        label="Upload Text File",
                        file_types=[".txt", ".md", ".py", ".js", ".html", ".css", ".json"]
                    )
                
                with gr.Column(scale=1):
                    submit_btn = gr.Button("Send", variant="primary")
        
        with gr.Column(scale=2):
            with gr.Accordion("Model Settings", open=True):
                model_selector = gr.Dropdown(
                    choices=[name for name, _ in free_models],
                    value=free_models[0][0],
                    label="Select Model"
                )
                
                temperature = gr.Slider(
                    minimum=0.1, 
                    maximum=2.0, 
                    value=0.7, 
                    step=0.1, 
                    label="Temperature"
                )
                
                top_p = gr.Slider(
                    minimum=0.1, 
                    maximum=1.0, 
                    value=1.0, 
                    step=0.1, 
                    label="Top P"
                )
                
                max_tokens = gr.Slider(
                    minimum=100, 
                    maximum=4000, 
                    value=1000, 
                    step=100, 
                    label="Max Tokens"
                )
                
                streaming = gr.Checkbox(
                    label="Enable Streaming", 
                    value=True
                )
                
                clear_btn = gr.Button("Clear Chat")
    
    # Set up event handlers
    msg_submit_event = user_message.submit(
        fn=update_conversation,
        inputs=[
            user_message, 
            chatbot, 
            model_selector, 
            image_upload, 
            file_upload,
            temperature,
            top_p,
            max_tokens,
            streaming
        ],
        outputs=chatbot
    )
    
    btn_submit_event = submit_btn.click(
        fn=update_conversation,
        inputs=[
            user_message, 
            chatbot, 
            model_selector, 
            image_upload, 
            file_upload,
            temperature,
            top_p,
            max_tokens,
            streaming
        ],
        outputs=chatbot
    )
    
    # Clear chat
    clear_btn.click(
        fn=lambda: [], 
        outputs=[chatbot]
    )
    
    # Clear input after submission
    msg_submit_event.then(
        fn=lambda: "", 
        outputs=[user_message]
    )
    
    btn_submit_event.then(
        fn=lambda: "", 
        outputs=[user_message]
    )

# Mount FastAPI for external access
from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class GenerateRequest(BaseModel):
    message: str
    model: str = None
    image_data: str = None

@app.post("/api/generate")
async def api_generate(request: GenerateRequest):
    """API endpoint for generating responses"""
    try:
        # Process request
        messages = [{"role": "user", "content": request.message}]
        
        # Handle image if provided
        if request.image_data:
            try:
                image_bytes = base64.b64decode(request.image_data)
                image = Image.open(BytesIO(image_bytes))
                base64_image = encode_image(image)
                
                messages = [{
                    "role": "user", 
                    "content": [
                        {"type": "text", "text": request.message},
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{base64_image}"
                            }
                        }
                    ]
                }]
            except Exception as e:
                return {"error": f"Image processing error: {str(e)}"}
        
        # Get model
        model_id = request.model or free_models[0][1]
        
        # Make API call
        response = process_api_call(messages, model_id, stream=False)
        response.raise_for_status()
        result = response.json()
        
        reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
        return {"response": reply}
        
    except Exception as e:
        return {"error": f"Error: {str(e)}"}

# Mount Gradio app
app = gr.mount_gradio_app(app, demo, path="/")

# Launch the app
if __name__ == "__main__":
    demo.launch()