File size: 11,139 Bytes
a13c2bb c96734b 1ca78b8 5e307e7 a13c2bb 5e307e7 c96734b a13c2bb 1ca78b8 b142a4a a13c2bb b142a4a a13c2bb 1ca78b8 9144903 a13c2bb 5e307e7 a13c2bb 3e6631d b142a4a a13c2bb b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 1ca78b8 b142a4a 5e307e7 b142a4a 3e6631d b142a4a 3e6631d 9144903 b142a4a 3e6631d b142a4a 1ca78b8 5e307e7 b142a4a 3e6631d 1ca78b8 b142a4a a13c2bb 1ca78b8 b142a4a a13c2bb 9144903 b142a4a a13c2bb b142a4a a13c2bb b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 3e6631d b142a4a 9144903 b142a4a 9144903 b142a4a a13c2bb b142a4a 9144903 b142a4a 3e6631d b142a4a 9144903 b142a4a a13c2bb b142a4a 1ca78b8 b142a4a 9144903 3e6631d a13c2bb b142a4a 9144903 3e6631d 9144903 3e6631d b142a4a 3e6631d b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 b142a4a 9144903 5e307e7 b142a4a a13c2bb 9144903 3e6631d 82deaf2 9144903 c96734b 9144903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import os
import base64
import gradio as gr
import requests
import json
from io import BytesIO
from PIL import Image
import time
# Get API key from environment variable for security
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Simplified model information with only name and ID
free_models = [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free"),
("Google: Gemini 2.0 Flash", "google/gemini-2.0-flash-exp:free"),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free"),
("Meta: Llama 3.2 11B Vision", "meta-llama/llama-3.2-11b-vision-instruct:free"),
("Qwen: Qwen2.5 VL 72B", "qwen/qwen2.5-vl-72b-instruct:free"),
("DeepSeek: DeepSeek R1", "deepseek/deepseek-r1:free"),
("Meta: Llama 3.1 8B", "meta-llama/llama-3.1-8b-instruct:free"),
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free")
]
# Helper functions
def encode_image(image):
"""Convert PIL Image to base64 string"""
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def encode_file(file_path):
"""Convert text file to string"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
return f"Error reading file: {str(e)}"
def generate_response(message, chat_history, model_name, uploaded_image=None, uploaded_file=None,
temp=0.7, max_tok=1000, use_stream=True):
"""Process message and get response from API"""
# Find model ID
model_id = next((model_id for name, model_id in free_models if name == model_name), free_models[0][1])
# Get context from history
messages = []
for turn in chat_history:
if isinstance(turn, tuple):
user_msg, ai_msg = turn
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": ai_msg})
# Process file if provided
if uploaded_file:
file_content = encode_file(uploaded_file)
message = f"{message}\n\nFile content:\n```\n{file_content}\n```"
# Create new message
if uploaded_image:
# Process image for vision models
base64_image = encode_image(uploaded_image)
content = [
{"type": "text", "text": message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": content})
else:
messages.append({"role": "user", "content": message})
# Setup headers and URL
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces",
}
url = "https://openrouter.ai/api/v1/chat/completions"
# Build request data
data = {
"model": model_id,
"messages": messages,
"stream": use_stream,
"temperature": temp,
"max_tokens": max_tok
}
# Add message to chat history
chat_history.append((message, ""))
try:
if use_stream:
# Streaming response
with requests.post(url, headers=headers, json=data, stream=True) as response:
response.raise_for_status()
full_response = ""
buffer = ""
for chunk in response.iter_content(chunk_size=1024, decode_unicode=False):
if chunk:
buffer += chunk.decode('utf-8')
# Process line by line
while '\n' in buffer:
line, buffer = buffer.split('\n', 1)
line = line.strip()
if line.startswith('data: '):
data = line[6:]
if data == '[DONE]':
break
try:
data_obj = json.loads(data)
delta_content = data_obj["choices"][0]["delta"].get("content", "")
if delta_content:
full_response += delta_content
chat_history[-1] = (message, full_response)
yield chat_history
except Exception:
pass
# Final yield to ensure complete message
if full_response:
chat_history[-1] = (message, full_response)
yield chat_history
else:
# Non-streaming response
response = requests.post(url, headers=headers, json=data)
response.raise_for_status()
result = response.json()
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
chat_history[-1] = (message, reply)
yield chat_history
except Exception as e:
error_msg = f"Error: {str(e)}"
chat_history[-1] = (message, error_msg)
yield chat_history
def clear_chat():
"""Clear the chat history"""
return []
def clear_input():
"""Clear the input field"""
return "", None, None
# Create a very simple UI
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# 🔆 CrispChat")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=500,
layout="bubble",
show_copy_button=True,
show_share_button=False,
avatar_images=("👤", "🤖")
)
with gr.Group():
user_message = gr.Textbox(
placeholder="Type your message here...",
lines=3,
show_label=False
)
with gr.Row():
image_upload = gr.Image(
type="pil",
label="Image (optional)",
show_label=True
)
file_upload = gr.File(
label="Text File (optional)",
file_types=[".txt", ".md", ".py", ".js", ".html", ".css", ".json"]
)
with gr.Row():
submit_btn = gr.Button("Send", variant="primary")
clear_chat_btn = gr.Button("Clear Chat")
with gr.Column(scale=1):
model_selector = gr.Dropdown(
choices=[name for name, _ in free_models],
value=free_models[0][0],
label="Select Model"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
streaming = gr.Checkbox(
label="Streaming",
value=True
)
# Set up submit events
submit_btn.click(
fn=generate_response,
inputs=[
user_message,
chatbot,
model_selector,
image_upload,
file_upload,
temperature,
max_tokens,
streaming
],
outputs=chatbot
).then(
fn=clear_input,
outputs=[user_message, image_upload, file_upload]
)
user_message.submit(
fn=generate_response,
inputs=[
user_message,
chatbot,
model_selector,
image_upload,
file_upload,
temperature,
max_tokens,
streaming
],
outputs=chatbot
).then(
fn=clear_input,
outputs=[user_message, image_upload, file_upload]
)
# Clear chat button
clear_chat_btn.click(
fn=clear_chat,
outputs=chatbot
)
# API for external access
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class GenerateRequest(BaseModel):
message: str
model: str = None
image_data: str = None
@app.post("/api/generate")
async def api_generate(request: GenerateRequest):
"""API endpoint for generating responses"""
try:
# Get model ID
model_id = request.model
if not model_id:
model_id = free_models[0][1]
# Process image if provided
messages = []
if request.image_data:
try:
image_bytes = base64.b64decode(request.image_data)
image = Image.open(BytesIO(image_bytes))
base64_image = encode_image(image)
content = [
{"type": "text", "text": request.message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": content})
except Exception as e:
return {"error": f"Image processing error: {str(e)}"}
else:
messages.append({"role": "user", "content": request.message})
# Setup API call
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces",
}
url = "https://openrouter.ai/api/v1/chat/completions"
data = {
"model": model_id,
"messages": messages,
"temperature": 0.7
}
# Make API call
response = requests.post(url, headers=headers, json=data)
response.raise_for_status()
# Parse response
result = response.json()
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
return {"response": reply}
except Exception as e:
return {"error": f"Error: {str(e)}"}
# Mount Gradio app
app = gr.mount_gradio_app(app, demo, path="/")
# Launch the app
if __name__ == "__main__":
demo.launch() |