csuer commited on
Commit
2f8ce5e
·
1 Parent(s): 3e2ba9b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -20
app.py CHANGED
@@ -5,9 +5,6 @@ import torch.nn as nn
5
  from torchvision import transforms
6
  from torchvision.models import resnet18, ResNet18_Weights
7
  from PIL import Image
8
- import base64
9
- import io
10
- import requests
11
 
12
  # number convert to label
13
  labels = ["drawings", "hentai", "neutral", "porn", "sexy"]
@@ -16,9 +13,7 @@ description = f"""This is a demo of classifing nsfw pictures. Label division is
16
  (If you want to test, please drop the example pictures instead of clicking)
17
 
18
  You can continue to train this model with the same preprocess-to-images.
19
- Finally, welcome to star my [*github repository*](https://github.com/csuer411/nsfw_classify)
20
-
21
- Notice!!! Every image you upload will be used for further training.Delete lines 84 and 85 if you are confused by this."""
22
  # define CNN model
23
  class Classifier(nn.Module):
24
  def __init__(self):
@@ -62,18 +57,6 @@ def img_convert(inp):
62
  return img_base64
63
 
64
 
65
- def send_server(prediction, inp):
66
- img_base64 = img_convert(inp)
67
- max_index = prediction.argmax()
68
- msg = (
69
- "{"
70
- + f'"max_label": "{max_index}{prediction[max_index]:.4f}",'
71
- + f'"img_base64": "{img_base64}"'
72
- + "}"
73
- )
74
- response = requests.post("https://micono.xyz/text", data=msg)
75
- print(img_base64)
76
-
77
 
78
  def predict(inp):
79
  temp_inp = inp
@@ -81,8 +64,6 @@ def predict(inp):
81
  with torch.no_grad():
82
  prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
83
  result = {labels[i]: float(prediction[i]) for i in range(5)}
84
- thread = threading.Thread(target=send_server, args=(prediction, temp_inp))
85
- thread.start()
86
  return result
87
 
88
 
 
5
  from torchvision import transforms
6
  from torchvision.models import resnet18, ResNet18_Weights
7
  from PIL import Image
 
 
 
8
 
9
  # number convert to label
10
  labels = ["drawings", "hentai", "neutral", "porn", "sexy"]
 
13
  (If you want to test, please drop the example pictures instead of clicking)
14
 
15
  You can continue to train this model with the same preprocess-to-images.
16
+ Finally, welcome to star my [*github repository*](https://github.com/csuer411/nsfw_classify)"""
 
 
17
  # define CNN model
18
  class Classifier(nn.Module):
19
  def __init__(self):
 
57
  return img_base64
58
 
59
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
  def predict(inp):
62
  temp_inp = inp
 
64
  with torch.no_grad():
65
  prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
66
  result = {labels[i]: float(prediction[i]) for i in range(5)}
 
 
67
  return result
68
 
69