Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # This software may be used and distributed according to the terms of the GNU General Public License version 3. | |
| from typing import Optional, Tuple | |
| from dataclasses import dataclass | |
| import math | |
| import functools | |
| import copy | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| import fairscale.nn.model_parallel.initialize as fs_init | |
| from fairscale.nn.model_parallel.layers import ( | |
| ParallelEmbedding, | |
| RowParallelLinear, | |
| ColumnParallelLinear, | |
| ) | |
| from ..components import RMSNorm | |
| from flash_attn import flash_attn_func | |
| import open_clip | |
| default_linear_init = nn.init.xavier_uniform_ | |
| class ModelArgs: | |
| dim: int = 512 | |
| n_layers: int = 8 | |
| n_heads: int = 8 | |
| vocab_size: int = -1 # defined later by tokenizer | |
| multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 | |
| norm_eps: float = 1e-5 | |
| max_batch_size: int = 32 | |
| max_seq_len: int = 2048 | |
| def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): | |
| freqs = 1.0 / (theta ** (torch.arange(0, dim, 2) | |
| [: (dim // 2)].float() / dim)) | |
| t = torch.arange(end, device=freqs.device) # type: ignore | |
| freqs = torch.outer(t, freqs).float() # type: ignore | |
| freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 | |
| return freqs_cis | |
| def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
| ndim = x.ndim | |
| assert 0 <= 1 < ndim | |
| assert freqs_cis.shape == (x.shape[1], x.shape[-1]) | |
| shape = [d if i == 1 or i == ndim - | |
| 1 else 1 for i, d in enumerate(x.shape)] | |
| return freqs_cis.view(*shape) | |
| def apply_rotary_emb( | |
| xq: torch.Tensor, | |
| xk: torch.Tensor, | |
| freqs_cis: torch.Tensor, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | |
| xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) | |
| freqs_cis = reshape_for_broadcast(freqs_cis, xq_) | |
| xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) | |
| xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) | |
| return xq_out.type_as(xq), xk_out.type_as(xk) | |
| class Attention(nn.Module): | |
| def __init__(self, args: ModelArgs): | |
| super().__init__() | |
| self.n_local_heads = args.n_heads // fs_init.get_model_parallel_world_size() | |
| self.head_dim = args.dim // args.n_heads | |
| self.wq = ColumnParallelLinear( | |
| args.dim, | |
| args.n_heads * self.head_dim, | |
| bias=False, | |
| gather_output=False, | |
| init_method=default_linear_init, | |
| ) | |
| self.wk = ColumnParallelLinear( | |
| args.dim, | |
| args.n_heads * self.head_dim, | |
| bias=False, | |
| gather_output=False, | |
| init_method=default_linear_init, | |
| ) | |
| self.wv = ColumnParallelLinear( | |
| args.dim, | |
| args.n_heads * self.head_dim, | |
| bias=False, | |
| gather_output=False, | |
| init_method=default_linear_init, | |
| ) | |
| self.wo = RowParallelLinear( | |
| args.n_heads * self.head_dim, | |
| args.dim, | |
| bias=False, | |
| input_is_parallel=True, | |
| init_method=default_linear_init, | |
| ) | |
| self.flash = True | |
| self.k_cache, self.v_cache = None, None | |
| def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], prompt=None): | |
| bsz, seqlen, _ = x.shape | |
| xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) | |
| xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
| xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
| xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
| if freqs_cis is not None: | |
| xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) | |
| if self.k_cache is None or self.v_cache is None: | |
| keys, values = xk, xv | |
| else: | |
| self.k_cache = self.k_cache.to(xk) | |
| self.v_cache = self.v_cache.to(xv) | |
| self.k_cache[:bsz, start_pos: start_pos + seqlen, :, :] = xk | |
| self.v_cache[:bsz, start_pos: start_pos + seqlen, :, :] = xv | |
| keys = self.k_cache[:bsz, :start_pos + seqlen] | |
| values = self.v_cache[:bsz, :start_pos + seqlen] | |
| output = flash_attn_func( | |
| xq, keys, values, dropout_p=0.0, causal=mask is not None) | |
| output = output.contiguous().view(bsz, seqlen, -1) | |
| return self.wo(output) | |
| def allocate_kv_cache(self, max_batch_size: int, max_seq_len: int) -> None: | |
| kv_cache_shape = (max_batch_size, max_seq_len, | |
| self.n_local_heads, self.head_dim) | |
| if self.k_cache is None or self.k_cache.size() != kv_cache_shape: | |
| self.k_cache = torch.empty(kv_cache_shape) | |
| if self.v_cache is None or self.v_cache.size() != kv_cache_shape: | |
| self.v_cache = torch.empty(kv_cache_shape) | |
| def destroy_kv_cache(self) -> None: | |
| self.k_cache, self.v_cache = None, None | |
| class FeedForward(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| hidden_dim: int, | |
| multiple_of: int, | |
| ): | |
| super().__init__() | |
| hidden_dim = int(2 * hidden_dim / 3) | |
| hidden_dim = multiple_of * \ | |
| ((hidden_dim + multiple_of - 1) // multiple_of) | |
| self.w1 = ColumnParallelLinear( | |
| dim, hidden_dim, bias=False, gather_output=False, init_method=default_linear_init, | |
| ) | |
| self.w2 = RowParallelLinear( | |
| hidden_dim, dim, bias=False, input_is_parallel=True, init_method=default_linear_init | |
| ) | |
| self.w3 = ColumnParallelLinear( | |
| dim, hidden_dim, bias=False, gather_output=False, init_method=default_linear_init | |
| ) | |
| def _silu_gating(self, x, y): | |
| return F.silu(x) * y | |
| def forward(self, x): | |
| return self.w2(self._silu_gating(self.w1(x), self.w3(x))) | |
| class TransformerBlock(nn.Module): | |
| def __init__(self, layer_id: int, args: ModelArgs): | |
| super().__init__() | |
| self.n_heads = args.n_heads | |
| self.dim = args.dim | |
| self.head_dim = args.dim // args.n_heads | |
| self.attention = Attention(args) | |
| self.feed_forward = FeedForward( | |
| dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of | |
| ) | |
| self.layer_id = layer_id | |
| self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
| self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
| def _forward_ffn(self, h): | |
| return h + self.feed_forward(self.ffn_norm(h)) | |
| def _forward_attention(self, x, start_pos, freqs_cis, mask, prompt): | |
| return x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask, prompt) | |
| def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], prompt=None): | |
| h = self._forward_attention(x, start_pos, freqs_cis, mask, prompt) | |
| out = self._forward_ffn(h) | |
| return out | |
| class Mlp(nn.Module): | |
| """ MLP as used in Vision Transformer, MLP-Mixer and related networks | |
| """ | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.fc2(x) | |
| return x | |
| class Transformer(nn.Module): | |
| def __init__(self, params: ModelArgs): | |
| super().__init__() | |
| self.params = params | |
| self.vocab_size = params.vocab_size | |
| self.n_layers = params.n_layers | |
| self.tok_embeddings = ParallelEmbedding( | |
| params.vocab_size, params.dim, init_method=nn.init.normal_, | |
| ) | |
| self.layers = torch.nn.ModuleList() | |
| for layer_id in range(params.n_layers): | |
| self.layers.append(TransformerBlock(layer_id, params)) | |
| self.norm = RMSNorm(params.dim, eps=params.norm_eps) | |
| self.output = ColumnParallelLinear( | |
| params.dim, params.vocab_size, bias=False, init_method=default_linear_init, | |
| ) | |
| self.freqs_cis = precompute_freqs_cis( | |
| self.params.dim // self.params.n_heads, self.params.max_seq_len * 2 | |
| ) | |
| # load clip | |
| self.clip, _, _ = open_clip.create_model_and_transforms( | |
| 'ViT-L-14', pretrained='openai') | |
| for param in self.clip.parameters(): | |
| param.requires_grad = False | |
| param.data = param.data.half() | |
| self.clip.transformer = None | |
| self.image_words = 30 | |
| self.cache_image_words = 0 # for inference | |
| clip_width = self.clip.visual.conv1.out_channels | |
| # create modal shared modules | |
| self.resample_layers = nn.ModuleDict() | |
| self.num_experts = 3 | |
| self.num_resample_layers = 8 | |
| for expert in range(self.num_experts): | |
| expert = str(expert) | |
| self.resample_layers[expert] = nn.ModuleList() | |
| resampler_params = copy.deepcopy(params) | |
| resampler_params.n_heads = 16 | |
| resampler_params.dim = clip_width | |
| for layer_id in range(self.num_resample_layers): | |
| self.resample_layers[expert].append( | |
| TransformerBlock(layer_id, resampler_params)) | |
| self.conv1 = nn.ModuleDict() | |
| self.positional_embedding = nn.ParameterDict() | |
| self.resample_tokens = nn.ParameterDict() | |
| self.clip_proj1 = nn.ModuleDict() | |
| self.clip_proj2 = nn.ModuleDict() | |
| self.routers = nn.ModuleDict() | |
| self.start_tag = nn.ParameterDict() | |
| self.end_tag = nn.ParameterDict() | |
| self.modals = ['image', 'audio', 'point', 'video', 'rgbd', 'rgbn', 'fmri', 'imu'] | |
| for modal in self.modals: | |
| if modal in ['image', 'video', 'rgbn', 'rgbn']: | |
| modal_tokens = 256 + 1 | |
| pass | |
| elif modal == 'audio': | |
| self.conv1[modal] = nn.Conv2d( | |
| 1, clip_width, kernel_size=(16, 16), stride=(10, 10)) | |
| modal_tokens = 1212 + 1 | |
| self.positional_embedding[modal] = nn.Parameter( | |
| torch.empty([modal_tokens, clip_width])) | |
| nn.init.normal_(self.positional_embedding[modal], std=0.02) | |
| elif modal == 'point': | |
| from model.lib.point_utils import PointPatchEmbed | |
| self.conv1[modal] = PointPatchEmbed( | |
| in_channels=6, channels=clip_width) | |
| modal_tokens = 1024 + 1 | |
| self.positional_embedding[modal] = nn.Parameter( | |
| torch.empty([modal_tokens, clip_width])) | |
| nn.init.normal_(self.positional_embedding[modal], std=0.02) | |
| elif modal == 'fmri': | |
| self.conv1[modal] = nn.Linear(15724, 8192) | |
| self.positional_embedding[modal] = nn.Parameter( | |
| torch.empty([8+1, clip_width])) | |
| nn.init.normal_(self.positional_embedding[modal], std=0.02) | |
| elif modal == 'imu': | |
| self.conv1[modal] = nn.Conv1d( | |
| in_channels=6, out_channels=clip_width, kernel_size=10, bias=False) | |
| self.positional_embedding[modal] = nn.Parameter( | |
| torch.empty([391+1, clip_width])) | |
| nn.init.normal_(self.positional_embedding[modal], std=0.02) | |
| self.routers[modal] = Mlp( | |
| clip_width, clip_width * 4, self.num_experts) | |
| self.resample_tokens[modal] = nn.Parameter( | |
| torch.empty([1, 30, resampler_params.dim])) | |
| nn.init.normal_(self.resample_tokens[modal], std=0.02) | |
| self.clip_proj1[modal] = nn.Sequential( | |
| nn.Linear(clip_width, resampler_params.dim), | |
| nn.LayerNorm(resampler_params.dim)) | |
| self.clip_proj2[modal] = nn.Sequential( | |
| nn.Linear(resampler_params.dim, params.dim), | |
| nn.LayerNorm(params.dim)) | |
| self.start_tag[modal] = nn.Parameter(torch.rand(1, 1, params.dim)) | |
| self.end_tag[modal] = nn.Parameter(torch.rand(1, 1, params.dim)) | |
| # @torch.no_grad() | |
| def clip_encode_image(self, x, modal='image'): | |
| # shape = [*, width, grid ** 2] | |
| x = x.reshape(x.shape[0], x.shape[1], -1) | |
| x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
| x = torch.cat([self.clip.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, | |
| x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
| # use pretrained pos embeding for rest modalities | |
| pos_embedding = self.clip.visual.positional_embedding | |
| if modal in ['audio', 'point', 'fmri', 'imu']: | |
| pos_embedding = self.positional_embedding[modal] | |
| x = x + pos_embedding.to(x.dtype) | |
| x = self.clip.visual.ln_pre(x) | |
| x = x.permute(1, 0, 2) # NLD -> LND | |
| x = self.clip.visual.transformer(x) | |
| x = x.permute(1, 0, 2) # LND -> NLD | |
| # preserve all spatial tokens | |
| x = self.clip.visual.ln_post(x[:, :, :]) | |
| # if self.clip.visual.proj is not None: | |
| # x = x @ self.clip.visual.proj | |
| return x | |
| def encode_image(self, x, modal='image'): | |
| bsz = x.size(0) | |
| T = 1 | |
| if modal in ['image']: | |
| # modified from CLIP | |
| x = self.clip.visual.conv1(x) # shape = [*, width, grid, grid] | |
| elif modal in ['audio', 'imu']: | |
| x = self.conv1[modal](x) | |
| elif modal == 'point': | |
| # [B, 16384, 6] -> [B, 1024, 1024, 1] | |
| x = self.conv1[modal](x.float()).to(x.dtype) | |
| elif modal in ['video', 'rgbd', 'rgbn']: | |
| # [B, 15, 3, 224, 224] | |
| B, T = x.shape[:2] | |
| bsz = B * T | |
| x = x.reshape(bsz, *x.shape[2:]) | |
| x = self.clip.visual.conv1(x) | |
| elif modal == 'fmri': | |
| x = self.conv1[modal](x) | |
| # [B, 1, 8196] -> [B, 1024, 8] | |
| x = x.reshape(x.size(0), self.clip.visual.conv1.out_channels, -1) | |
| image_feats = self.clip_encode_image(x, modal=modal) | |
| # take mean on time dimension | |
| # all inputs are reduced to [B, L, D] | |
| bsz = int(bsz / T) | |
| image_feats = image_feats.reshape( | |
| bsz, T, *image_feats.shape[1:]).mean(dim=1) | |
| image_feats = self.clip_proj1[modal](image_feats) | |
| image_feats = torch.cat( | |
| [self.resample_tokens[modal].repeat(bsz, 1, 1), image_feats], dim=1) | |
| # routing modalites | |
| # [B, L, D]->[B, L, N] | |
| routing_weights = self.routers[modal](image_feats).sigmoid() | |
| routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True) | |
| image_feats_experts = [] | |
| for expert_id in range(self.num_experts): | |
| image_feats_expert = image_feats | |
| for layer in self.resample_layers[str(expert_id)]: | |
| image_feats_expert = layer(image_feats_expert, 0, None, None) | |
| image_feats_expert = image_feats_expert[:, :self.resample_tokens[modal].size(1)] | |
| routing_weight = routing_weights[:, :self.resample_tokens[modal].size( | |
| 1), expert_id] | |
| # [B, L, D] * [B, L, 1] | |
| image_feats_expert = image_feats_expert * routing_weight[:, :, None] | |
| image_feats_experts.append(image_feats_expert) | |
| image_feats = sum(image_feats_experts) | |
| image_feats = self.clip_proj2[modal](image_feats) | |
| return image_feats | |
| def forward(self, examples, image=None, modal='image'): | |
| self._destroy_kv_cache() # training always disables kv cache | |
| modal = modal[0] | |
| _bsz, seqlen = examples.shape | |
| h = self.tok_embeddings(examples) | |
| self.freqs_cis = self.freqs_cis.to(h.device) | |
| start_pos = 0 | |
| prefix_len = 0 | |
| if image is not None: | |
| h_bos, h_caption = h[:, :1], h[:, 1:] | |
| image_tokens = self.encode_image(image, modal) | |
| h = torch.cat((h_bos, self.start_tag[modal].expand( | |
| _bsz, -1, -1), image_tokens, self.end_tag[modal].expand(_bsz, -1, -1), h_caption), dim=1) | |
| # bos + image token + start_tag[modal], end_tag[modal] is used for caption generation | |
| prefix_len = image_tokens.shape[1] + 1 + 1 | |
| seqlen = h.shape[1] | |
| freqs_cis = self.freqs_cis[start_pos:start_pos + seqlen] | |
| mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=h.device) | |
| mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h) | |
| for layer in self.layers: | |
| h = layer(h, start_pos, freqs_cis, mask) | |
| h = self.norm(h) | |
| output = self.output(h[:, prefix_len:, :]) | |
| return output | |
| def forward_inference(self, tokens: torch.Tensor, start_pos: int, image=None, modal='image'): | |
| modal = modal[0] if isinstance(modal, list) else modal | |
| _bsz, seqlen = tokens.shape | |
| if start_pos == 0: | |
| # kv cache will not re-allocate if size is unchanged | |
| self._allocate_kv_cache(_bsz) | |
| h = self.tok_embeddings(tokens) | |
| self.freqs_cis = self.freqs_cis.to(h.device) | |
| if image is not None: | |
| h_bos, h_caption = h[:, :1], h[:, 1:] | |
| image_tokens = self.encode_image(image, modal) | |
| self.cache_image_words = image_tokens.shape[1] | |
| h = torch.cat((h_bos, self.start_tag[modal].repeat(_bsz, 1, 1), image_tokens, self.end_tag[modal].repeat(_bsz, 1, 1), h_caption), dim=1) | |
| seqlen = h.shape[1] | |
| freqs_cis = self.freqs_cis[0: seqlen] | |
| else: | |
| if start_pos == 0: | |
| self.cache_image_words = 0 | |
| freqs_cis = self.freqs_cis[0: seqlen] | |
| else: | |
| # if image was not None when start_pos=0, | |
| # the offset should be added to start_pos within later forward_inference calls | |
| start_pos = start_pos + self.cache_image_words | |
| freqs_cis = self.freqs_cis[start_pos: start_pos + seqlen] | |
| # freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] | |
| mask = None | |
| if seqlen > 1: | |
| mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device) | |
| mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h) | |
| for layer in self.layers: | |
| h = layer(h, start_pos, freqs_cis, mask) | |
| h = self.norm(h) | |
| output = self.output(h[:, -1, :]) # only compute last logits | |
| return output.float() | |
| def _allocate_kv_cache(self, max_batch_size: int) -> None: | |
| for layer in self.layers: | |
| layer.attention.allocate_kv_cache( | |
| max_batch_size, self.params.max_seq_len) | |
| def _destroy_kv_cache(self) -> None: | |
| for layer in self.layers: | |
| layer.attention.destroy_kv_cache() | |