Spaces:
Runtime error
Runtime error
| import warnings | |
| import torch | |
| import torch.nn as nn | |
| try: | |
| from apex.normalization import FusedRMSNorm as RMSNorm | |
| except ImportError: | |
| warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation") | |
| class RMSNorm(torch.nn.Module): | |
| def __init__(self, dim: int, eps: float = 1e-6): | |
| """ | |
| Initialize the RMSNorm normalization layer. | |
| Args: | |
| dim (int): The dimension of the input tensor. | |
| eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. | |
| Attributes: | |
| eps (float): A small value added to the denominator for numerical stability. | |
| weight (nn.Parameter): Learnable scaling parameter. | |
| """ | |
| super().__init__() | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| def _norm(self, x): | |
| """ | |
| Apply the RMSNorm normalization to the input tensor. | |
| Args: | |
| x (torch.Tensor): The input tensor. | |
| Returns: | |
| torch.Tensor: The normalized tensor. | |
| """ | |
| return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
| def forward(self, x): | |
| """ | |
| Forward pass through the RMSNorm layer. | |
| Args: | |
| x (torch.Tensor): The input tensor. | |
| Returns: | |
| torch.Tensor: The output tensor after applying RMSNorm. | |
| """ | |
| output = self._norm(x.float()).type_as(x) | |
| return output * self.weight | |