Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
from PIL import Image
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
7 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
|
8 |
|
9 |
-
|
10 |
def process_image(image):
|
11 |
-
# Chuyển
|
|
|
|
|
|
|
|
|
12 |
if image.mode in ("RGBA", "LA"):
|
13 |
background = Image.new("RGB", image.size, (255, 255, 255))
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
18 |
generated_ids = model.generate(pixel_values)
|
19 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
20 |
return generated_text
|
21 |
|
22 |
-
|
23 |
-
title = "
|
24 |
-
description = "
|
25 |
|
26 |
interface = gr.Interface(
|
27 |
fn=process_image,
|
28 |
inputs="image",
|
29 |
-
examples=[f"examples/captcha-{i}.png" for i in range(10)],
|
30 |
outputs="text",
|
|
|
31 |
title=title,
|
32 |
-
description=description
|
33 |
-
)
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
|
6 |
+
# Load model và processor
|
7 |
+
model_name = "chanelcolgate/trocr-base-printed_captcha_ocr"
|
8 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_name)
|
9 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
|
10 |
|
11 |
+
# Hàm xử lý ảnh captcha
|
12 |
def process_image(image):
|
13 |
+
# Chuyển numpy -> PIL nếu cần
|
14 |
+
if isinstance(image, np.ndarray):
|
15 |
+
image = Image.fromarray(image)
|
16 |
+
|
17 |
+
# Thêm nền trắng nếu ảnh có alpha
|
18 |
if image.mode in ("RGBA", "LA"):
|
19 |
background = Image.new("RGB", image.size, (255, 255, 255))
|
20 |
+
background.paste(image, mask=image.split()[-1])
|
21 |
+
image = background
|
22 |
+
else:
|
23 |
+
image = image.convert("RGB")
|
24 |
|
25 |
+
# Encode và predict
|
26 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
27 |
generated_ids = model.generate(pixel_values)
|
28 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
29 |
return generated_text
|
30 |
|
31 |
+
# Giao diện Gradio
|
32 |
+
title = "Captcha OCR Demo"
|
33 |
+
description = "Nhận diện captcha từ mã số thuế (MST) – Model TrOCR"
|
34 |
|
35 |
interface = gr.Interface(
|
36 |
fn=process_image,
|
37 |
inputs="image",
|
|
|
38 |
outputs="text",
|
39 |
+
examples=[f"examples/captcha-{i}.png" for i in range(10)],
|
40 |
title=title,
|
41 |
+
description=description,
|
42 |
+
)
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
interface.launch()
|