Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import json
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from fastapi import FastAPI, HTTPException, Body
|
8 |
+
from fastapi.responses import StreamingResponse, Response, HTMLResponse
|
9 |
+
from fastapi.middleware import Middleware
|
10 |
+
from fastapi.middleware.gzip import GZipMiddleware
|
11 |
+
from pydantic import BaseModel
|
12 |
+
|
13 |
+
from onnxruntime import InferenceSession
|
14 |
+
from huggingface_hub import snapshot_download
|
15 |
+
from scipy.io.wavfile import write as write_wav
|
16 |
+
|
17 |
+
from diffusers import OnnxStableDiffusionPipeline
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
class ImageRequest(BaseModel):
|
21 |
+
prompt: str
|
22 |
+
num_inference_steps: int = 50
|
23 |
+
guidance_scale: float = 7.5
|
24 |
+
format: str = "png" # or "jpeg"
|
25 |
+
|
26 |
+
|
27 |
+
model_repo = "runwayml/stable-diffusion-v1-5" # Or any other ONNX compatible Stable Diffusion model
|
28 |
+
model_name = "model_q4.onnx" # if specific model file needed, otherwise directory is enough
|
29 |
+
voice_file_pattern = "*.bin" # not used, keep for inspiration, remove if not needed
|
30 |
+
local_dir = "sd_onnx_models_snapshot" # different folder for sd models
|
31 |
+
snapshot_download(
|
32 |
+
repo_id=model_repo,
|
33 |
+
revision="onnx",
|
34 |
+
local_dir=local_dir,
|
35 |
+
local_dir_use_symlinks=False,
|
36 |
+
allow_patterns=["*.onnx", "*.json", "vae/*.onnx"] # Specify necessary file patterns (adjust as needed)
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
pipeline = OnnxStableDiffusionPipeline.from_pretrained(
|
41 |
+
local_dir, # Use the local path from snapshot_download
|
42 |
+
provider="CPUExecutionProvider", # Or "CUDAExecutionProvider" if you have GPU
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
app = FastAPI(
|
47 |
+
title="FastAPI Image Generation with ONNX",
|
48 |
+
middleware=[Middleware(GZipMiddleware, compresslevel=9)] # maybe compression is not needed for images? check later
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
@app.post("/generate-image/streaming", summary="Streaming Image Generation")
|
53 |
+
async def generate_image_streaming(request: ImageRequest = Body(...)):
|
54 |
+
prompt = request.prompt
|
55 |
+
num_inference_steps = request.num_inference_steps
|
56 |
+
guidance_scale = request.guidance_scale
|
57 |
+
format = request.format.lower()
|
58 |
+
|
59 |
+
def image_generator():
|
60 |
+
|
61 |
+
try:
|
62 |
+
start_time = time.time()
|
63 |
+
image = pipeline(
|
64 |
+
prompt,
|
65 |
+
num_inference_steps=num_inference_steps,
|
66 |
+
guidance_scale=guidance_scale
|
67 |
+
).images[0]
|
68 |
+
print(f"Image generation inference time: {time.time() - start_time:.3f}s")
|
69 |
+
|
70 |
+
img_byte_arr = io.BytesIO()
|
71 |
+
image_format = format.upper() if format in ["png", "jpeg"] else "PNG" # Default to PNG if format is invalid
|
72 |
+
image.save(img_byte_arr, format=image_format)
|
73 |
+
img_byte_arr = img_byte_arr.getvalue()
|
74 |
+
yield img_byte_arr
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error processing image generation: {e}")
|
78 |
+
# yield error response? or just error out
|
79 |
+
|
80 |
+
media_type = f"image/{format}" if format in ["png", "jpeg"] else "image/png"
|
81 |
+
return StreamingResponse(
|
82 |
+
image_generator(),
|
83 |
+
media_type=media_type,
|
84 |
+
headers={"Cache-Control": "no-cache"},
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
@app.post("/generate-image/full", summary="Full Image Generation")
|
89 |
+
async def generate_image_full(request: ImageRequest = Body(...)):
|
90 |
+
prompt = request.prompt
|
91 |
+
num_inference_steps = request.num_inference_steps
|
92 |
+
guidance_scale = request.guidance_scale
|
93 |
+
format = request.format.lower()
|
94 |
+
|
95 |
+
start_time = time.time()
|
96 |
+
image = pipeline(
|
97 |
+
prompt,
|
98 |
+
num_inference_steps=num_inference_steps,
|
99 |
+
guidance_scale=guidance_scale
|
100 |
+
).images[0]
|
101 |
+
print(f"Full Image generation inference time: {time.time()-start_time:.3f}s")
|
102 |
+
|
103 |
+
|
104 |
+
img_byte_arr = io.BytesIO()
|
105 |
+
image_format = format.upper() if format in ["png", "jpeg"] else "PNG"
|
106 |
+
image.save(img_byte_arr, format=image_format)
|
107 |
+
img_byte_arr.seek(0)
|
108 |
+
|
109 |
+
|
110 |
+
media_type = f"image/{format}" if format in ["png", "jpeg"] else "image/png"
|
111 |
+
return Response(content=img_byte_arr.read(), media_type=media_type)
|
112 |
+
|
113 |
+
|
114 |
+
@app.get("/", response_class=HTMLResponse)
|
115 |
+
def index():
|
116 |
+
return """
|
117 |
+
<!DOCTYPE html>
|
118 |
+
<html>
|
119 |
+
<head>
|
120 |
+
<title>FastAPI Image Generation Demo</title>
|
121 |
+
<style>
|
122 |
+
body { font-family: Arial, sans-serif; }
|
123 |
+
.container { width: 80%; margin: auto; padding-top: 20px; }
|
124 |
+
h1 { text-align: center; }
|
125 |
+
.form-group { margin-bottom: 15px; }
|
126 |
+
label { display: block; margin-bottom: 5px; font-weight: bold; }
|
127 |
+
input[type="text"], input[type="number"], textarea, select { width: 100%; padding: 8px; box-sizing: border-box; margin-bottom: 10px; border: 1px solid #ccc; border-radius: 4px; }
|
128 |
+
textarea { height: 100px; }
|
129 |
+
button { padding: 10px 15px; border: none; color: white; background-color: #007bff; border-radius: 4px; cursor: pointer; }
|
130 |
+
button:hover { background-color: #0056b3; }
|
131 |
+
img { display: block; margin-top: 20px; max-width: 500px; } /* Adjust max-width as needed */
|
132 |
+
</style>
|
133 |
+
</head>
|
134 |
+
<body>
|
135 |
+
<div class="container">
|
136 |
+
<h1>FastAPI Image Generation Demo</h1>
|
137 |
+
<div class="form-group">
|
138 |
+
<label for="prompt">Text Prompt:</label>
|
139 |
+
<textarea id="prompt" rows="4" placeholder="Enter text prompt here"></textarea>
|
140 |
+
</div>
|
141 |
+
<div class="form-group">
|
142 |
+
<label for="num_inference_steps">Number of Inference Steps:</label>
|
143 |
+
<input type="number" id="num_inference_steps" value="50">
|
144 |
+
</div>
|
145 |
+
<div class="form-group">
|
146 |
+
<label for="guidance_scale">Guidance Scale:</label>
|
147 |
+
<input type="number" step="0.5" id="guidance_scale" value="7.5">
|
148 |
+
</div>
|
149 |
+
<div class="form-group">
|
150 |
+
<label for="format">Format:</label>
|
151 |
+
<select id="format">
|
152 |
+
<option value="png" selected>PNG</option>
|
153 |
+
<option value="jpeg">JPEG</option>
|
154 |
+
</select>
|
155 |
+
</div>
|
156 |
+
<div class="form-group">
|
157 |
+
<button onclick="generateStreamingImage()">Generate Streaming Image</button>
|
158 |
+
<button onclick="generateFullImage()">Generate Full Image</button>
|
159 |
+
</div>
|
160 |
+
<div id="image-container">
|
161 |
+
<img id="image" src="#" alt="Generated Image" style="display:none;">
|
162 |
+
</div>
|
163 |
+
</div>
|
164 |
+
<script>
|
165 |
+
function generateStreamingImage() {
|
166 |
+
const prompt = document.getElementById('prompt').value;
|
167 |
+
const num_inference_steps = document.getElementById('num_inference_steps').value;
|
168 |
+
const guidance_scale = document.getElementById('guidance_scale').value;
|
169 |
+
const format = document.getElementById('format').value;
|
170 |
+
const imageElement = document.getElementById('image');
|
171 |
+
const imageContainer = document.getElementById('image-container');
|
172 |
+
|
173 |
+
fetch('/generate-image/streaming', {
|
174 |
+
method: 'POST',
|
175 |
+
headers: {
|
176 |
+
'Content-Type': 'application/json'
|
177 |
+
},
|
178 |
+
body: JSON.stringify({
|
179 |
+
prompt: prompt,
|
180 |
+
num_inference_steps: parseInt(num_inference_steps),
|
181 |
+
guidance_scale: parseFloat(guidance_scale),
|
182 |
+
format: format
|
183 |
+
})
|
184 |
+
})
|
185 |
+
.then(response => response.blob())
|
186 |
+
.then(blob => {
|
187 |
+
const imageUrl = URL.createObjectURL(blob);
|
188 |
+
imageElement.src = imageUrl;
|
189 |
+
imageElement.style.display = 'block'; // Show the image
|
190 |
+
imageContainer.style.display = 'block'; // Show the container if hidden
|
191 |
+
});
|
192 |
+
}
|
193 |
+
|
194 |
+
function generateFullImage() {
|
195 |
+
const prompt = document.getElementById('prompt').value;
|
196 |
+
const num_inference_steps = document.getElementById('num_inference_steps').value;
|
197 |
+
const guidance_scale = document.getElementById('guidance_scale').value;
|
198 |
+
const format = document.getElementById('format').value;
|
199 |
+
const imageElement = document.getElementById('image');
|
200 |
+
const imageContainer = document.getElementById('image-container');
|
201 |
+
|
202 |
+
|
203 |
+
fetch('/generate-image/full', {
|
204 |
+
method: 'POST',
|
205 |
+
headers: {
|
206 |
+
'Content-Type': 'application/json'
|
207 |
+
},
|
208 |
+
body: JSON.stringify({
|
209 |
+
prompt: prompt,
|
210 |
+
num_inference_steps: parseInt(num_inference_steps),
|
211 |
+
guidance_scale: parseFloat(guidance_scale),
|
212 |
+
format: format
|
213 |
+
})
|
214 |
+
})
|
215 |
+
.then(response => response.blob())
|
216 |
+
.then(blob => {
|
217 |
+
const imageUrl = URL.createObjectURL(blob);
|
218 |
+
imageElement.src = imageUrl;
|
219 |
+
imageElement.style.display = 'block'; // Show the image
|
220 |
+
imageContainer.style.display = 'block'; // Show the container if hidden
|
221 |
+
});
|
222 |
+
}
|
223 |
+
</script>
|
224 |
+
</body>
|
225 |
+
</html>
|
226 |
+
"""
|
227 |
+
|
228 |
+
if __name__ == "__main__":
|
229 |
+
import uvicorn
|
230 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|