Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,102 @@
|
|
1 |
import os
|
2 |
|
3 |
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
import librosa
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import torch
|
8 |
-
from torch import
|
|
|
|
|
|
|
9 |
import commons
|
10 |
import utils
|
11 |
-
import
|
12 |
from models import SynthesizerTrn
|
13 |
-
from text import
|
14 |
-
from
|
|
|
|
|
15 |
|
|
|
16 |
|
17 |
-
def get_text(text):
|
18 |
-
text_norm =
|
19 |
if hps.data.add_blank:
|
20 |
text_norm = commons.intersperse(text_norm, 0)
|
21 |
-
text_norm = LongTensor(text_norm)
|
22 |
return text_norm
|
|
|
23 |
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
if len(text) > 150:
|
27 |
return "Error: Text is too long", None
|
28 |
-
stn_tst = get_text(text)
|
29 |
-
with no_grad():
|
30 |
x_tst = stn_tst.unsqueeze(0)
|
31 |
-
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
32 |
-
|
33 |
-
|
34 |
-
0, 0].data.cpu().float().numpy()
|
35 |
-
return "Success", (hps.data.sampling_rate, audio)
|
36 |
|
37 |
|
38 |
-
def
|
39 |
-
if
|
40 |
-
return "
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
if len(audio.shape) > 1:
|
47 |
-
audio = librosa.to_mono(audio.transpose(1, 0))
|
48 |
-
if sampling_rate != hps.data.sampling_rate:
|
49 |
-
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
|
50 |
-
y = torch.FloatTensor(audio)
|
51 |
-
y = y.unsqueeze(0)
|
52 |
-
spec = spectrogram_torch(y, hps.data.filter_length,
|
53 |
-
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
54 |
-
center=False)
|
55 |
-
spec_lengths = LongTensor([spec.size(-1)])
|
56 |
-
sid_src = LongTensor([original_speaker_id])
|
57 |
-
sid_tgt = LongTensor([target_speaker_id])
|
58 |
-
with no_grad():
|
59 |
-
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
60 |
0, 0].data.cpu().float().numpy()
|
61 |
return "Success", (hps.data.sampling_rate, audio)
|
62 |
|
63 |
|
64 |
if __name__ == '__main__':
|
65 |
-
|
66 |
-
model_path = "saved_model/model.pth"
|
67 |
-
hps = utils.get_hparams_from_file(config_path)
|
68 |
-
model = SynthesizerTrn(
|
69 |
-
len(hps.symbols),
|
70 |
-
hps.data.filter_length // 2 + 1,
|
71 |
-
hps.train.segment_size // hps.data.hop_length,
|
72 |
-
n_speakers=hps.data.n_speakers,
|
73 |
-
**hps.model)
|
74 |
-
utils.load_checkpoint(model_path, model, None)
|
75 |
-
model.eval()
|
76 |
|
77 |
app = gr.Blocks()
|
78 |
|
79 |
with app:
|
80 |
with gr.Tabs():
|
81 |
-
with gr.
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
tts_output1 = gr.Textbox(label="Output Message")
|
87 |
-
tts_output2 = gr.Audio(label="Output Audio")
|
88 |
|
89 |
tts_submit.click(tts_fn, [tts_input1, tts_input2], [tts_output1, tts_output2])
|
90 |
-
vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
|
91 |
|
92 |
app.launch()
|
|
|
1 |
import os
|
2 |
|
3 |
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
|
4 |
+
os.system('pip install pypinyin Cython==0.29.21 librosa==0.8.0 matplotlib==3.3.1 numpy==1.18.5 phonemizer==2.2.1 scipy==1.5.2 Unidecode==1.1.1 >log.log')
|
5 |
+
os.system('sudo apt-get install espeak -y >log.log')
|
6 |
+
os.system('pip install gdown >log.log')
|
7 |
+
os.system('pip install pyopenjtalk janome > log.log')
|
8 |
+
os.system('pip install cloud-tpu-client > log.log')
|
9 |
+
|
10 |
+
import logging
|
11 |
+
|
12 |
+
numba_logger = logging.getLogger('numba')
|
13 |
+
numba_logger.setLevel(logging.WARNING)
|
14 |
|
15 |
import librosa
|
16 |
+
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
import IPython.display as ipd
|
19 |
+
|
20 |
+
import os
|
21 |
+
import json
|
22 |
+
import math
|
23 |
import torch
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import functional as F
|
26 |
+
from torch.utils.data import DataLoader
|
27 |
+
|
28 |
import commons
|
29 |
import utils
|
30 |
+
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
31 |
from models import SynthesizerTrn
|
32 |
+
from text.symbols import symbols
|
33 |
+
from text.cleaners import japanese_phrase_cleaners
|
34 |
+
from text import cleaned_text_to_sequence
|
35 |
+
from pypinyin import lazy_pinyin, Style
|
36 |
|
37 |
+
from scipy.io.wavfile import write
|
38 |
|
39 |
+
def get_text(text, hps):
|
40 |
+
text_norm = cleaned_text_to_sequence(text)
|
41 |
if hps.data.add_blank:
|
42 |
text_norm = commons.intersperse(text_norm, 0)
|
43 |
+
text_norm = torch.LongTensor(text_norm)
|
44 |
return text_norm
|
45 |
+
# hps_ms = utils.get_hparams_from_file("./configs/vctk_base.json")
|
46 |
|
47 |
|
48 |
+
hps = utils.get_hparams_from_file("./configs/tokaiteio.json")
|
49 |
+
# net_g_ms = SynthesizerTrn(
|
50 |
+
# len(symbols),
|
51 |
+
# hps_ms.data.filter_length // 2 + 1,
|
52 |
+
# hps_ms.train.segment_size // hps.data.hop_length,
|
53 |
+
# n_speakers=hps_ms.data.n_speakers,
|
54 |
+
# **hps_ms.model)
|
55 |
+
|
56 |
+
net_g = SynthesizerTrn(
|
57 |
+
len(symbols),
|
58 |
+
hps.data.filter_length // 2 + 1,
|
59 |
+
hps.train.segment_size // hps.data.hop_length,
|
60 |
+
**hps.model)
|
61 |
+
_ = net_g.eval()
|
62 |
+
|
63 |
+
|
64 |
+
def tts(text):
|
65 |
if len(text) > 150:
|
66 |
return "Error: Text is too long", None
|
67 |
+
stn_tst = get_text(text, hps)
|
68 |
+
with torch.no_grad():
|
69 |
x_tst = stn_tst.unsqueeze(0)
|
70 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
71 |
+
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.float().numpy()
|
72 |
+
ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate))
|
|
|
|
|
73 |
|
74 |
|
75 |
+
def tts_fn(text, speaker_id):
|
76 |
+
if len(text) > 150:
|
77 |
+
return "Error: Text is too long", None
|
78 |
+
stn_tst = get_text(text, hps)
|
79 |
+
with torch.no_grad():
|
80 |
+
x_tst = stn_tst.unsqueeze(0)
|
81 |
+
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
82 |
+
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
0, 0].data.cpu().float().numpy()
|
84 |
return "Success", (hps.data.sampling_rate, audio)
|
85 |
|
86 |
|
87 |
if __name__ == '__main__':
|
88 |
+
_ = utils.load_checkpoint("G_50000.pth", net_g, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
app = gr.Blocks()
|
91 |
|
92 |
with app:
|
93 |
with gr.Tabs():
|
94 |
+
with gr.Column():
|
95 |
+
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="γγγ«γ‘γ―γ")
|
96 |
+
tts_submit = gr.Button("Generate", variant="primary")
|
97 |
+
tts_output1 = gr.Textbox(label="Output Message")
|
98 |
+
tts_output2 = gr.Audio(label="Output Audio")
|
|
|
|
|
99 |
|
100 |
tts_submit.click(tts_fn, [tts_input1, tts_input2], [tts_output1, tts_output2])
|
|
|
101 |
|
102 |
app.launch()
|