Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
from typing import List, Dict, Any, Union
|
5 |
+
from contextlib import AsyncExitStack
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
from gradio.components.chatbot import ChatMessage
|
9 |
+
from mcp import ClientSession, StdioServerParameters
|
10 |
+
from mcp.client.stdio import stdio_client
|
11 |
+
from mcp.client.sse import sse_client
|
12 |
+
from anthropic import Anthropic
|
13 |
+
from datasets import load_dataset
|
14 |
+
import pandas as pd
|
15 |
+
|
16 |
+
loop = asyncio.new_event_loop()
|
17 |
+
asyncio.set_event_loop(loop)
|
18 |
+
|
19 |
+
class MCPClientWrapper:
|
20 |
+
def __init__(self):
|
21 |
+
self.session = None
|
22 |
+
self.exit_stack = None
|
23 |
+
self.anthropic = None
|
24 |
+
self.tools = []
|
25 |
+
self.dataset = None
|
26 |
+
self.validation_results = []
|
27 |
+
|
28 |
+
def set_api_key(self, api_key: str) -> str:
|
29 |
+
"""Set the Anthropic API key and initialize the client"""
|
30 |
+
if not api_key or not api_key.strip():
|
31 |
+
return "Please enter a valid Anthropic API key"
|
32 |
+
|
33 |
+
try:
|
34 |
+
self.anthropic = Anthropic(api_key=api_key.strip())
|
35 |
+
return "API key set successfully ✅"
|
36 |
+
except Exception as e:
|
37 |
+
return f"Failed to set API key: {str(e)}"
|
38 |
+
|
39 |
+
def connect(self, server_input: str) -> str:
|
40 |
+
if not self.anthropic:
|
41 |
+
return "Please set your Anthropic API key first"
|
42 |
+
return loop.run_until_complete(self._connect(server_input))
|
43 |
+
|
44 |
+
async def _connect(self, server_input: str) -> str:
|
45 |
+
if self.exit_stack:
|
46 |
+
await self.exit_stack.aclose()
|
47 |
+
|
48 |
+
self.exit_stack = AsyncExitStack()
|
49 |
+
|
50 |
+
try:
|
51 |
+
# Check if input is a URL (starts with http:// or https://)
|
52 |
+
if server_input.startswith(('http://', 'https://')):
|
53 |
+
# Connect via SSE
|
54 |
+
read, write = await self.exit_stack.enter_async_context(
|
55 |
+
sse_client(server_input)
|
56 |
+
)
|
57 |
+
connection_type = "SSE URL"
|
58 |
+
else:
|
59 |
+
# Connect via stdio (local file)
|
60 |
+
is_python = server_input.endswith('.py')
|
61 |
+
command = "python" if is_python else "node"
|
62 |
+
|
63 |
+
server_params = StdioServerParameters(
|
64 |
+
command=command,
|
65 |
+
args=[server_input],
|
66 |
+
env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"}
|
67 |
+
)
|
68 |
+
|
69 |
+
read, write = await self.exit_stack.enter_async_context(
|
70 |
+
stdio_client(server_params)
|
71 |
+
)
|
72 |
+
connection_type = "Local script"
|
73 |
+
|
74 |
+
self.session = await self.exit_stack.enter_async_context(
|
75 |
+
ClientSession(read, write)
|
76 |
+
)
|
77 |
+
await self.session.initialize()
|
78 |
+
|
79 |
+
response = await self.session.list_tools()
|
80 |
+
self.tools = [{
|
81 |
+
"name": tool.name,
|
82 |
+
"description": tool.description,
|
83 |
+
"input_schema": tool.inputSchema
|
84 |
+
} for tool in response.tools]
|
85 |
+
|
86 |
+
tool_names = [tool["name"] for tool in self.tools]
|
87 |
+
return f"Connected to MCP server via {connection_type}. Available tools: {', '.join(tool_names)}"
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
return f"Connection failed: {str(e)}"
|
91 |
+
|
92 |
+
def load_dataset(self) -> tuple:
|
93 |
+
"""Load the TAAIC Phase1 validation dataset"""
|
94 |
+
try:
|
95 |
+
self.dataset = load_dataset("aitxchallenge/Phase1_Model_Validator", split="train")
|
96 |
+
dataset_info = f"Dataset loaded successfully! {len(self.dataset)} validation cases available."
|
97 |
+
|
98 |
+
# Create a preview of the dataset
|
99 |
+
df = pd.DataFrame(self.dataset)
|
100 |
+
preview = df.head().to_string()
|
101 |
+
|
102 |
+
return (
|
103 |
+
dataset_info,
|
104 |
+
gr.Button("🔍 Validate", interactive=True),
|
105 |
+
gr.Textbox(value=f"Dataset Preview:\n{preview}", visible=True)
|
106 |
+
)
|
107 |
+
except Exception as e:
|
108 |
+
return (
|
109 |
+
f"Failed to load dataset: {str(e)}",
|
110 |
+
gr.Button("📥 Load Dataset", interactive=True),
|
111 |
+
gr.Textbox(visible=False)
|
112 |
+
)
|
113 |
+
|
114 |
+
def validate_tools(self) -> str:
|
115 |
+
"""Run validation on all dataset cases"""
|
116 |
+
if not self.anthropic:
|
117 |
+
return "Please set your Anthropic API key first."
|
118 |
+
|
119 |
+
if not self.dataset:
|
120 |
+
return "Please load the dataset first."
|
121 |
+
|
122 |
+
if not self.session:
|
123 |
+
return "Please connect to an MCP server first."
|
124 |
+
|
125 |
+
return loop.run_until_complete(self._run_validation())
|
126 |
+
|
127 |
+
async def _run_validation(self) -> str:
|
128 |
+
"""Async validation runner"""
|
129 |
+
self.validation_results = []
|
130 |
+
total_cases = len(self.dataset)
|
131 |
+
passed = 0
|
132 |
+
failed = 0
|
133 |
+
|
134 |
+
for i, case in enumerate(self.dataset):
|
135 |
+
try:
|
136 |
+
# Extract test case information
|
137 |
+
query = case.get('query', case.get('question', ''))
|
138 |
+
expected_output = case.get('expected_output', case.get('expected', ''))
|
139 |
+
test_id = case.get('id', f'test_{i}')
|
140 |
+
|
141 |
+
# Run the query through the MCP tools
|
142 |
+
result = await self._validate_single_case(query, expected_output, test_id)
|
143 |
+
self.validation_results.append(result)
|
144 |
+
|
145 |
+
if result['passed']:
|
146 |
+
passed += 1
|
147 |
+
else:
|
148 |
+
failed += 1
|
149 |
+
|
150 |
+
except Exception as e:
|
151 |
+
failed += 1
|
152 |
+
self.validation_results.append({
|
153 |
+
'test_id': test_id,
|
154 |
+
'query': query,
|
155 |
+
'error': str(e),
|
156 |
+
'passed': False
|
157 |
+
})
|
158 |
+
|
159 |
+
# Generate validation report
|
160 |
+
report = f"""
|
161 |
+
VALIDATION COMPLETE
|
162 |
+
==================
|
163 |
+
Total Cases: {total_cases}
|
164 |
+
Passed: {passed}
|
165 |
+
Failed: {failed}
|
166 |
+
Success Rate: {(passed/total_cases)*100:.1f}%
|
167 |
+
|
168 |
+
DETAILED RESULTS:
|
169 |
+
"""
|
170 |
+
|
171 |
+
for result in self.validation_results:
|
172 |
+
status = "✅ PASS" if result['passed'] else "❌ FAIL"
|
173 |
+
report += f"\n{status} [{result['test_id']}] {result['query'][:50]}..."
|
174 |
+
if not result['passed'] and 'error' in result:
|
175 |
+
report += f"\n Error: {result['error']}"
|
176 |
+
|
177 |
+
return report
|
178 |
+
|
179 |
+
async def _validate_single_case(self, query: str, expected_output: str, test_id: str) -> Dict[str, Any]:
|
180 |
+
"""Validate a single test case"""
|
181 |
+
try:
|
182 |
+
# Send query to Claude with MCP tools
|
183 |
+
claude_messages = [{"role": "user", "content": query}]
|
184 |
+
|
185 |
+
response = self.anthropic.messages.create(
|
186 |
+
model="claude-3-5-sonnet-20241022",
|
187 |
+
max_tokens=1000,
|
188 |
+
messages=claude_messages,
|
189 |
+
tools=self.tools
|
190 |
+
)
|
191 |
+
|
192 |
+
# Process tool calls if any
|
193 |
+
actual_output = ""
|
194 |
+
for content in response.content:
|
195 |
+
if content.type == 'text':
|
196 |
+
actual_output += content.text
|
197 |
+
elif content.type == 'tool_use':
|
198 |
+
tool_result = await self.session.call_tool(content.name, content.input)
|
199 |
+
actual_output += str(tool_result.content)
|
200 |
+
|
201 |
+
# Simple validation logic - you may want to customize this
|
202 |
+
passed = self._validate_output(actual_output, expected_output)
|
203 |
+
|
204 |
+
return {
|
205 |
+
'test_id': test_id,
|
206 |
+
'query': query,
|
207 |
+
'expected': expected_output,
|
208 |
+
'actual': actual_output,
|
209 |
+
'passed': passed
|
210 |
+
}
|
211 |
+
|
212 |
+
except Exception as e:
|
213 |
+
return {
|
214 |
+
'test_id': test_id,
|
215 |
+
'query': query,
|
216 |
+
'error': str(e),
|
217 |
+
'passed': False
|
218 |
+
}
|
219 |
+
|
220 |
+
def _validate_output(self, actual: str, expected: str) -> bool:
|
221 |
+
"""Basic output validation - customize based on your needs"""
|
222 |
+
# This is a simple implementation - you may want more sophisticated validation
|
223 |
+
if not expected:
|
224 |
+
return True # If no expected output specified, consider it passed
|
225 |
+
|
226 |
+
# You can implement more sophisticated matching here
|
227 |
+
# For now, using simple substring matching
|
228 |
+
return expected.lower() in actual.lower()
|
229 |
+
|
230 |
+
def process_message(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]) -> tuple:
|
231 |
+
if not self.anthropic:
|
232 |
+
return history + [
|
233 |
+
{"role": "user", "content": message},
|
234 |
+
{"role": "assistant", "content": "Please set your Anthropic API key first."}
|
235 |
+
], gr.Textbox(value="")
|
236 |
+
|
237 |
+
if not self.session:
|
238 |
+
return history + [
|
239 |
+
{"role": "user", "content": message},
|
240 |
+
{"role": "assistant", "content": "Please connect to an MCP server first."}
|
241 |
+
], gr.Textbox(value="")
|
242 |
+
|
243 |
+
new_messages = loop.run_until_complete(self._process_query(message, history))
|
244 |
+
return history + [{"role": "user", "content": message}] + new_messages, gr.Textbox(value="")
|
245 |
+
|
246 |
+
async def _process_query(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]):
|
247 |
+
claude_messages = []
|
248 |
+
for msg in history:
|
249 |
+
if isinstance(msg, ChatMessage):
|
250 |
+
role, content = msg.role, msg.content
|
251 |
+
else:
|
252 |
+
role, content = msg.get("role"), msg.get("content")
|
253 |
+
|
254 |
+
if role in ["user", "assistant", "system"]:
|
255 |
+
claude_messages.append({"role": role, "content": content})
|
256 |
+
|
257 |
+
claude_messages.append({"role": "user", "content": message})
|
258 |
+
|
259 |
+
response = self.anthropic.messages.create(
|
260 |
+
model="claude-3-5-sonnet-20241022",
|
261 |
+
max_tokens=1000,
|
262 |
+
messages=claude_messages,
|
263 |
+
tools=self.tools
|
264 |
+
)
|
265 |
+
|
266 |
+
result_messages = []
|
267 |
+
|
268 |
+
for content in response.content:
|
269 |
+
if content.type == 'text':
|
270 |
+
result_messages.append({
|
271 |
+
"role": "assistant",
|
272 |
+
"content": content.text
|
273 |
+
})
|
274 |
+
|
275 |
+
elif content.type == 'tool_use':
|
276 |
+
tool_name = content.name
|
277 |
+
tool_args = content.input
|
278 |
+
|
279 |
+
result_messages.append({
|
280 |
+
"role": "assistant",
|
281 |
+
"content": f"I'll only use the {tool_name} tool to help answer your question.",
|
282 |
+
"metadata": {
|
283 |
+
"title": f"Using tool: {tool_name}",
|
284 |
+
"log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
|
285 |
+
"status": "pending",
|
286 |
+
"id": f"tool_call_{tool_name}"
|
287 |
+
}
|
288 |
+
})
|
289 |
+
|
290 |
+
result_messages.append({
|
291 |
+
"role": "assistant",
|
292 |
+
"content": "```json\n" + json.dumps(tool_args, indent=2, ensure_ascii=True) + "\n```",
|
293 |
+
"metadata": {
|
294 |
+
"parent_id": f"tool_call_{tool_name}",
|
295 |
+
"id": f"params_{tool_name}",
|
296 |
+
"title": "Tool Parameters"
|
297 |
+
}
|
298 |
+
})
|
299 |
+
|
300 |
+
try:
|
301 |
+
result = await self.session.call_tool(tool_name, tool_args)
|
302 |
+
|
303 |
+
if result_messages and "metadata" in result_messages[-2]:
|
304 |
+
result_messages[-2]["metadata"]["status"] = "done"
|
305 |
+
|
306 |
+
result_messages.append({
|
307 |
+
"role": "assistant",
|
308 |
+
"content": "Here are the results from the tool:",
|
309 |
+
"metadata": {
|
310 |
+
"title": f"Tool Result for {tool_name}",
|
311 |
+
"status": "done",
|
312 |
+
"id": f"result_{tool_name}"
|
313 |
+
}
|
314 |
+
})
|
315 |
+
|
316 |
+
result_content = result.content
|
317 |
+
if isinstance(result_content, list):
|
318 |
+
result_content = "\n".join(str(item) for item in result_content)
|
319 |
+
|
320 |
+
try:
|
321 |
+
result_json = json.loads(result_content)
|
322 |
+
if isinstance(result_json, dict) and "type" in result_json:
|
323 |
+
if result_json["type"] == "image" and "url" in result_json:
|
324 |
+
result_messages.append({
|
325 |
+
"role": "assistant",
|
326 |
+
"content": {"path": result_json["url"], "alt_text": result_json.get("message", "Generated image")},
|
327 |
+
"metadata": {
|
328 |
+
"parent_id": f"result_{tool_name}",
|
329 |
+
"id": f"image_{tool_name}",
|
330 |
+
"title": "Generated Image"
|
331 |
+
}
|
332 |
+
})
|
333 |
+
else:
|
334 |
+
result_messages.append({
|
335 |
+
"role": "assistant",
|
336 |
+
"content": "```\n" + result_content + "\n```",
|
337 |
+
"metadata": {
|
338 |
+
"parent_id": f"result_{tool_name}",
|
339 |
+
"id": f"raw_result_{tool_name}",
|
340 |
+
"title": "Raw Output"
|
341 |
+
}
|
342 |
+
})
|
343 |
+
except:
|
344 |
+
result_messages.append({
|
345 |
+
"role": "assistant",
|
346 |
+
"content": "```\n" + result_content + "\n```",
|
347 |
+
"metadata": {
|
348 |
+
"parent_id": f"result_{tool_name}",
|
349 |
+
"id": f"raw_result_{tool_name}",
|
350 |
+
"title": "Raw Output"
|
351 |
+
}
|
352 |
+
})
|
353 |
+
|
354 |
+
claude_messages.append({"role": "user", "content": f"Tool result for {tool_name}: {result_content}"})
|
355 |
+
next_response = self.anthropic.messages.create(
|
356 |
+
model="claude-3-5-sonnet-20241022",
|
357 |
+
max_tokens=1000,
|
358 |
+
messages=claude_messages,
|
359 |
+
)
|
360 |
+
|
361 |
+
if next_response.content and next_response.content[0].type == 'text':
|
362 |
+
result_messages.append({
|
363 |
+
"role": "assistant",
|
364 |
+
"content": next_response.content[0].text
|
365 |
+
})
|
366 |
+
|
367 |
+
except Exception as e:
|
368 |
+
result_messages.append({
|
369 |
+
"role": "assistant",
|
370 |
+
"content": f"Error calling tool {tool_name}: {str(e)}",
|
371 |
+
"metadata": {
|
372 |
+
"title": f"Error - {tool_name}",
|
373 |
+
"status": "error",
|
374 |
+
"id": f"error_{tool_name}"
|
375 |
+
}
|
376 |
+
})
|
377 |
+
|
378 |
+
return result_messages
|
379 |
+
|
380 |
+
client = MCPClientWrapper()
|
381 |
+
|
382 |
+
def gradio_interface():
|
383 |
+
with gr.Blocks(title="TAAIC Tool Validation") as demo:
|
384 |
+
gr.Markdown("# TAAIC Tool Validation")
|
385 |
+
gr.Markdown("Connect your Gradio MCP Tool for validation for the TAAIC challenge.")
|
386 |
+
|
387 |
+
# API Key input section
|
388 |
+
with gr.Row(equal_height=True):
|
389 |
+
with gr.Column(scale=4):
|
390 |
+
api_key_input = gr.Textbox(
|
391 |
+
label="Anthropic API Key",
|
392 |
+
placeholder="Enter your Anthropic API key (sk-ant-...)",
|
393 |
+
type="password"
|
394 |
+
)
|
395 |
+
with gr.Column(scale=1):
|
396 |
+
api_key_btn = gr.Button("Set API Key")
|
397 |
+
|
398 |
+
api_key_status = gr.Textbox(label="API Key Status", interactive=False)
|
399 |
+
|
400 |
+
# MCP Server connection section
|
401 |
+
with gr.Row(equal_height=True):
|
402 |
+
with gr.Column(scale=4):
|
403 |
+
server_input = gr.Textbox(
|
404 |
+
label="MCP Server URL or Script Path",
|
405 |
+
placeholder="Enter URL (e.g., https://cyrilzakka-clinical-trials.hf.space/gradio_api/mcp/sse) or local script path (e.g., weather.py)",
|
406 |
+
value="https://cyrilzakka-clinical-trials.hf.space/gradio_api/mcp/sse"
|
407 |
+
)
|
408 |
+
with gr.Column(scale=1):
|
409 |
+
connect_btn = gr.Button("Connect")
|
410 |
+
|
411 |
+
status = gr.Textbox(label="Connection Status", interactive=False)
|
412 |
+
|
413 |
+
# Dataset loading section
|
414 |
+
with gr.Row(equal_height=True):
|
415 |
+
with gr.Column(scale=3):
|
416 |
+
dataset_status = gr.Textbox(
|
417 |
+
label="Dataset Status",
|
418 |
+
value="Click 'Load Dataset' to load validation cases",
|
419 |
+
interactive=False
|
420 |
+
)
|
421 |
+
with gr.Column(scale=1):
|
422 |
+
dataset_btn = gr.Button("📥 Load Dataset", interactive=True)
|
423 |
+
|
424 |
+
dataset_preview = gr.Textbox(
|
425 |
+
label="Dataset Preview",
|
426 |
+
visible=False,
|
427 |
+
interactive=False,
|
428 |
+
max_lines=10
|
429 |
+
)
|
430 |
+
|
431 |
+
# Validation results
|
432 |
+
validation_results = gr.Textbox(
|
433 |
+
label="Validation Results",
|
434 |
+
visible=False,
|
435 |
+
interactive=False,
|
436 |
+
max_lines=20
|
437 |
+
)
|
438 |
+
|
439 |
+
# Event handlers
|
440 |
+
api_key_btn.click(client.set_api_key, inputs=api_key_input, outputs=api_key_status)
|
441 |
+
connect_btn.click(client.connect, inputs=server_input, outputs=status)
|
442 |
+
|
443 |
+
dataset_btn.click(
|
444 |
+
client.load_dataset,
|
445 |
+
outputs=[dataset_status, dataset_btn, dataset_preview]
|
446 |
+
)
|
447 |
+
|
448 |
+
def run_validation():
|
449 |
+
results = client.validate_tools()
|
450 |
+
return gr.Textbox(value=results, visible=True)
|
451 |
+
|
452 |
+
dataset_btn.click(
|
453 |
+
lambda: client.validate_tools() if client.dataset else "Please load dataset first.",
|
454 |
+
outputs=validation_results,
|
455 |
+
show_progress=True
|
456 |
+
).then(
|
457 |
+
lambda: gr.Textbox(visible=True),
|
458 |
+
outputs=validation_results
|
459 |
+
)
|
460 |
+
|
461 |
+
# msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
|
462 |
+
# clear_btn.click(lambda: [], None, chatbot)
|
463 |
+
|
464 |
+
return demo
|
465 |
+
|
466 |
+
if __name__ == "__main__":
|
467 |
+
interface = gradio_interface()
|
468 |
+
interface.launch(debug=True)
|