Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ from threading import Thread
|
|
5 |
import torch
|
6 |
import spaces
|
7 |
|
8 |
-
MODEL_ID = "
|
9 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
10 |
model = AutoModelForImageTextToText.from_pretrained(
|
11 |
MODEL_ID,
|
@@ -14,42 +14,15 @@ model = AutoModelForImageTextToText.from_pretrained(
|
|
14 |
).to("cuda").eval()
|
15 |
|
16 |
@spaces.GPU
|
17 |
-
def
|
18 |
text = input_dict["text"]
|
19 |
files = input_dict["files"]
|
20 |
|
21 |
-
"""
|
22 |
-
Create chat history
|
23 |
-
Example history value:
|
24 |
-
[
|
25 |
-
[('pixel.png',), None],
|
26 |
-
['ignore this image. just say "hi" and nothing else', 'Hi!'],
|
27 |
-
['just say "hi" and nothing else', 'Hi!']
|
28 |
-
]
|
29 |
-
"""
|
30 |
all_images = []
|
31 |
current_message_images = []
|
32 |
messages = []
|
33 |
|
34 |
-
|
35 |
-
if val[0]:
|
36 |
-
if isinstance(val[0], str):
|
37 |
-
messages.append({
|
38 |
-
"role": "user",
|
39 |
-
"content": [
|
40 |
-
*[{"type": "image", "image": image} for image in current_message_images],
|
41 |
-
{"type": "text", "text": val[0]},
|
42 |
-
],
|
43 |
-
})
|
44 |
-
current_message_images = []
|
45 |
-
|
46 |
-
else:
|
47 |
-
# Load messages. These will be appended to the first user text message that comes after
|
48 |
-
current_message_images = [load_image(image) for image in val[0]]
|
49 |
-
all_images += current_message_images
|
50 |
-
|
51 |
-
if val[1]:
|
52 |
-
messages.append({"role": "assistant", "content": val[1]})
|
53 |
|
54 |
current_message_images = [load_image(image) for image in files]
|
55 |
all_images += current_message_images
|
@@ -61,11 +34,6 @@ def inference(input_dict, history):
|
|
61 |
],
|
62 |
})
|
63 |
|
64 |
-
#print(messages)
|
65 |
-
|
66 |
-
"""
|
67 |
-
Generate and stream text
|
68 |
-
"""
|
69 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
70 |
inputs = processor(
|
71 |
text=[prompt],
|
@@ -86,7 +54,8 @@ def inference(input_dict, history):
|
|
86 |
yield buffer
|
87 |
|
88 |
demo = gr.ChatInterface(
|
89 |
-
fn=
|
|
|
90 |
multimodal=True,
|
91 |
)
|
92 |
|
|
|
5 |
import torch
|
6 |
import spaces
|
7 |
|
8 |
+
MODEL_ID = "TIGER-Lab/VL-Rethinker-7B"
|
9 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
10 |
model = AutoModelForImageTextToText.from_pretrained(
|
11 |
MODEL_ID,
|
|
|
14 |
).to("cuda").eval()
|
15 |
|
16 |
@spaces.GPU
|
17 |
+
def respond(input_dict, chat_history):
|
18 |
text = input_dict["text"]
|
19 |
files = input_dict["files"]
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
all_images = []
|
22 |
current_message_images = []
|
23 |
messages = []
|
24 |
|
25 |
+
messages.append(chat_history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
current_message_images = [load_image(image) for image in files]
|
28 |
all_images += current_message_images
|
|
|
34 |
],
|
35 |
})
|
36 |
|
|
|
|
|
|
|
|
|
|
|
37 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
38 |
inputs = processor(
|
39 |
text=[prompt],
|
|
|
54 |
yield buffer
|
55 |
|
56 |
demo = gr.ChatInterface(
|
57 |
+
fn=respond,
|
58 |
+
type='messages',
|
59 |
multimodal=True,
|
60 |
)
|
61 |
|