Spaces:
Sleeping
Sleeping
| from diffusers import ( | |
| StableDiffusionXLControlNetImg2ImgPipeline, | |
| ControlNetModel, | |
| AutoencoderKL, | |
| AutoencoderTiny, | |
| ) | |
| from compel import Compel, ReturnedEmbeddingsType | |
| from pydantic import BaseModel, Field | |
| from utils.canny_gpu import SobelOperator | |
| import torch | |
| try: | |
| import intel_extension_for_pytorch as ipex # type: ignore | |
| except: | |
| pass | |
| import psutil | |
| from PIL import Image | |
| import math | |
| import time | |
| controlnet_model = "diffusers/controlnet-canny-sdxl-1.0" | |
| model_id = "stabilityai/sdxl-turbo" | |
| taesd_model = "madebyollin/taesdxl" | |
| default_prompt = "Portrait of The Joker halloween costume, face painting, with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece" | |
| default_negative_prompt = "blurry, low quality, render, 3D, oversaturated" | |
| class Pipeline: | |
| class Info(BaseModel): | |
| name: str = "controlnet+SDXL+Turbo" | |
| title: str = "SDXL Turbo + Controlnet" | |
| description: str = "Generates an image from a text prompt" | |
| input_mode: str = "image" | |
| class InputParams(BaseModel): | |
| prompt: str = Field( | |
| default_prompt, | |
| title="Prompt", | |
| field="textarea", | |
| id="prompt", | |
| ) | |
| negative_prompt: str = Field( | |
| default_negative_prompt, | |
| title="Negative Prompt", | |
| field="textarea", | |
| id="negative_prompt", | |
| hide=True, | |
| ) | |
| seed: int = Field( | |
| 2159232, min=0, title="Seed", field="seed", hide=True, id="seed" | |
| ) | |
| steps: int = Field( | |
| 2, min=1, max=15, title="Steps", field="range", hide=True, id="steps" | |
| ) | |
| width: int = Field( | |
| 512, min=2, max=15, title="Width", disabled=True, hide=True, id="width" | |
| ) | |
| height: int = Field( | |
| 512, min=2, max=15, title="Height", disabled=True, hide=True, id="height" | |
| ) | |
| guidance_scale: float = Field( | |
| 1.0, | |
| min=0, | |
| max=10, | |
| step=0.001, | |
| title="Guidance Scale", | |
| field="range", | |
| hide=True, | |
| id="guidance_scale", | |
| ) | |
| strength: float = Field( | |
| 0.5, | |
| min=0.25, | |
| max=1.0, | |
| step=0.001, | |
| title="Strength", | |
| field="range", | |
| hide=True, | |
| id="strength", | |
| ) | |
| controlnet_scale: float = Field( | |
| 0.5, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet Scale", | |
| field="range", | |
| hide=True, | |
| id="controlnet_scale", | |
| ) | |
| controlnet_start: float = Field( | |
| 0.0, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet Start", | |
| field="range", | |
| hide=True, | |
| id="controlnet_start", | |
| ) | |
| controlnet_end: float = Field( | |
| 1.0, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet End", | |
| field="range", | |
| hide=True, | |
| id="controlnet_end", | |
| ) | |
| canny_low_threshold: float = Field( | |
| 0.31, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Canny Low Threshold", | |
| field="range", | |
| hide=True, | |
| id="canny_low_threshold", | |
| ) | |
| canny_high_threshold: float = Field( | |
| 0.125, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Canny High Threshold", | |
| field="range", | |
| hide=True, | |
| id="canny_high_threshold", | |
| ) | |
| debug_canny: bool = Field( | |
| False, | |
| title="Debug Canny", | |
| field="checkbox", | |
| hide=True, | |
| id="debug_canny", | |
| ) | |
| def __init__(self, device: torch.device, torch_dtype: torch.dtype): | |
| controlnet_canny = ControlNetModel.from_pretrained( | |
| controlnet_model, torch_dtype=torch_dtype | |
| ).to(device) | |
| vae = AutoencoderKL.from_pretrained( | |
| "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype | |
| ) | |
| self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained( | |
| model_id, | |
| controlnet=controlnet_canny, | |
| vae=vae, | |
| ) | |
| self.canny_torch = SobelOperator(device=device) | |
| self.pipe.set_progress_bar_config(disable=True) | |
| self.pipe.to(device=device, dtype=torch_dtype).to(device) | |
| if device.type != "mps": | |
| self.pipe.unet.to(memory_format=torch.channels_last) | |
| if psutil.virtual_memory().total < 64 * 1024**3: | |
| self.pipe.enable_attention_slicing() | |
| self.pipe.compel_proc = Compel( | |
| tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2], | |
| text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2], | |
| returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
| requires_pooled=[False, True], | |
| ) | |
| #if args.use_taesd: | |
| self.pipe.vae = AutoencoderTiny.from_pretrained( | |
| taesd_model, torch_dtype=torch_dtype, use_safetensors=True | |
| ).to(device) | |
| #if args.torch_compile: | |
| self.pipe.unet = torch.compile( | |
| self.pipe.unet, mode="reduce-overhead", fullgraph=True | |
| ) | |
| self.pipe.vae = torch.compile( | |
| self.pipe.vae, mode="reduce-overhead", fullgraph=True | |
| ) | |
| self.pipe( | |
| prompt="warmup", | |
| image=[Image.new("RGB", (512, 512))], | |
| control_image=[Image.new("RGB", (512, 512))], | |
| ) | |