Spaces:
Running
Running
daishen
commited on
Commit
·
def1d66
1
Parent(s):
55d67f1
update leaderboard
Browse files- get_data_info.py +14 -12
- leaderboard.xlsx +0 -0
- scores.xlsx +0 -0
get_data_info.py
CHANGED
@@ -7,7 +7,8 @@ def process_plot_data(df, flag=False):
|
|
7 |
# 保留"Model"和"Domain"列,删除其他列
|
8 |
df2 = df[["Model", "Domain"]].copy()
|
9 |
|
10 |
-
columns_names = ["Model", "Domain", "AR", "ER", "NER", "JS", "CR", "CFM", "SCM",
|
|
|
11 |
# 计算新的列的值
|
12 |
for col in columns_names[2:]:
|
13 |
if col in ["AR", "ER", "CR", "CFM", "SCM", "CTP", "LQA"]:
|
@@ -16,14 +17,15 @@ def process_plot_data(df, flag=False):
|
|
16 |
df2[col] = df[[f"{col}-CP-F1", f"{col}-PTP-F1"]].mean(axis=1) * 100
|
17 |
if col == "NER":
|
18 |
df2[col] = df[f"{col}-Acc"] * 100
|
19 |
-
if col in ["JRG", "LC"]:
|
20 |
rouge_mean = df[[f"{col}-ROUGE-1", f"{col}-ROUGE-2", f"{col}-ROUGE-L"]].replace('-', np.nan).mean(axis=1)
|
21 |
df2.loc[df[f"{col}-ROUGE-1"] == '-', col] = '-'
|
22 |
df2.loc[df[f"{col}-ROUGE-1"] != '-', col] = rouge_mean * 100
|
23 |
-
if col in ["JS", "CU"]:
|
24 |
-
|
25 |
df2.reindex(columns=columns_names)
|
26 |
|
|
|
27 |
if flag:
|
28 |
# 保存到Excel文件
|
29 |
with pd.ExcelWriter('scores.xlsx') as writer:
|
@@ -37,8 +39,8 @@ def plot_data():
|
|
37 |
'leaderboard.xlsx',
|
38 |
sheet_name='Sheet2',
|
39 |
header=0,
|
40 |
-
usecols='A:
|
41 |
-
nrows=
|
42 |
leaderboard_df.fillna("-")
|
43 |
|
44 |
df = process_plot_data(leaderboard_df)
|
@@ -64,16 +66,16 @@ def tab_data():
|
|
64 |
'leaderboard.xlsx',
|
65 |
sheet_name='Sheet2',
|
66 |
header=0,
|
67 |
-
usecols='A:
|
68 |
-
nrows=
|
69 |
leaderboard_df.fillna("-")
|
70 |
|
71 |
-
df_nlp = leaderboard_df.iloc[:,
|
72 |
-
df_basic = leaderboard_df.iloc[:,
|
73 |
-
df_complex = leaderboard_df.iloc[:,
|
74 |
|
75 |
# Get df_overall
|
76 |
-
df_overall = leaderboard_df.iloc[:,
|
77 |
plot_df_dict = {
|
78 |
"Overall": df_overall,
|
79 |
"Basic Legal NLP": df_nlp,
|
|
|
7 |
# 保留"Model"和"Domain"列,删除其他列
|
8 |
df2 = df[["Model", "Domain"]].copy()
|
9 |
|
10 |
+
columns_names = ["Model", "Domain", "AR", "ER", "NER", "JS", "CR", "CFM", "SCM",
|
11 |
+
"CJP", "CTP", "LQA", "JRG", "CU", "LC", "JRG-TAG", "LC-TAG"]
|
12 |
# 计算新的列的值
|
13 |
for col in columns_names[2:]:
|
14 |
if col in ["AR", "ER", "CR", "CFM", "SCM", "CTP", "LQA"]:
|
|
|
17 |
df2[col] = df[[f"{col}-CP-F1", f"{col}-PTP-F1"]].mean(axis=1) * 100
|
18 |
if col == "NER":
|
19 |
df2[col] = df[f"{col}-Acc"] * 100
|
20 |
+
if col in ["JRG", "LC", "JS", "CU", "JRG-TAG", "LC-TAG"]:
|
21 |
rouge_mean = df[[f"{col}-ROUGE-1", f"{col}-ROUGE-2", f"{col}-ROUGE-L"]].replace('-', np.nan).mean(axis=1)
|
22 |
df2.loc[df[f"{col}-ROUGE-1"] == '-', col] = '-'
|
23 |
df2.loc[df[f"{col}-ROUGE-1"] != '-', col] = rouge_mean * 100
|
24 |
+
# if col in ["JS", "CU"]:
|
25 |
+
# df2[col] = df[[f"{col}-ROUGE-1", f"{col}-ROUGE-2", f"{col}-ROUGE-L"]].mean(axis=1) * 100
|
26 |
df2.reindex(columns=columns_names)
|
27 |
|
28 |
+
flag = True
|
29 |
if flag:
|
30 |
# 保存到Excel文件
|
31 |
with pd.ExcelWriter('scores.xlsx') as writer:
|
|
|
39 |
'leaderboard.xlsx',
|
40 |
sheet_name='Sheet2',
|
41 |
header=0,
|
42 |
+
usecols='A:BE',
|
43 |
+
nrows=18)
|
44 |
leaderboard_df.fillna("-")
|
45 |
|
46 |
df = process_plot_data(leaderboard_df)
|
|
|
66 |
'leaderboard.xlsx',
|
67 |
sheet_name='Sheet2',
|
68 |
header=0,
|
69 |
+
usecols='A:BE',
|
70 |
+
nrows=18)
|
71 |
leaderboard_df.fillna("-")
|
72 |
|
73 |
+
df_nlp = leaderboard_df.iloc[:, list(range(0, 18))] # todo
|
74 |
+
df_basic = leaderboard_df.iloc[:, list(range(0, 2)) + list(range(18, 42))] # todo
|
75 |
+
df_complex = leaderboard_df.iloc[:, list(range(0, 2)) + list(range(42, 56))] # todo
|
76 |
|
77 |
# Get df_overall
|
78 |
+
df_overall = leaderboard_df.iloc[:, list(range(0, 56))]
|
79 |
plot_df_dict = {
|
80 |
"Overall": df_overall,
|
81 |
"Basic Legal NLP": df_nlp,
|
leaderboard.xlsx
CHANGED
Binary files a/leaderboard.xlsx and b/leaderboard.xlsx differ
|
|
scores.xlsx
CHANGED
Binary files a/scores.xlsx and b/scores.xlsx differ
|
|