homework3 / app.py
dakkoong's picture
Update app.py
1f52e1d
raw
history blame
3.04 kB
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024"
)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[204, 166, 62],
[188, 229, 92],
[47, 157,39],
[178, 235, 244],
[0, 51, 153],
[181, 178, 255],
[128, 65, 217],
[255, 178, 245],
[153, 0, 76],
[25, 186, 52],
[81, 162, 235],
[255, 255, 0],
[62, 57, 159],
[91, 189, 203],
[0, 0, 255],
[0, 255, 255],
[12, 168, 0],
[255, 0, 0],
[231, 32, 65]
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
seg = tf.math.argmax(logits, axis=-1)[0]
# Assuming each label corresponds to a class
class_labels = seg.numpy().flatten().tolist()
return class_labels
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(400, 600)),
outputs=gr.outputs.Label(), # Use Label output type for class labels
examples=["cityoutdoor-1.jpg", "cityoutdoor-2.jpg", "cityoutdoor-3.jpg"],
allow_flagging='never')
demo.launch()