homework3 / app.py
dakkoong's picture
Update app.py
31405c0
raw
history blame
1.13 kB
import gradio as gr
import numpy as np
from PIL import Image
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
# Segformer ๋ชจ๋ธ ๋ฐ feature extractor ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
# ๋ชจ๋ธ ์˜ˆ์ธก ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
def classify_image(img):
# ์ด๋ฏธ์ง€๋ฅผ ์ „์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
inputs = feature_extractor(images=img, return_tensors="tf")
# ๋ชจ๋ธ๋กœ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
predictions = model(**inputs)
# ์˜ˆ์ธก ๊ฒฐ๊ณผ ์ค‘์—์„œ ๊ฐ€์žฅ ๋†’์€ ํ™•๋ฅ ์„ ๊ฐ€์ง„ ํด๋ž˜์Šค๋ฅผ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.
predicted_label = tf.argmax(predictions.logits[0], axis=-1).numpy()
# ๋ผ๋ฒจ์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
return predicted_label
# Gradio UI๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
iface = gr.Interface(fn=classify_image,
inputs="image",
outputs="label", live=True)
# Gradio UI๋ฅผ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.
iface.launch()