homework3 / app.py
dakkoong's picture
Update app.py
89fa28d
raw
history blame
1.22 kB
import gradio as gr
import numpy as np
from PIL import Image
from tensorflow.keras.models import load_model
# ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ๋ถˆ๋Ÿฌ์˜ต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—์„œ๋Š” ๊ฐ„๋‹จํ•œ ์˜ˆ์‹œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
model = load_model('nvidia/segformer-b1-finetuned-cityscapes-1024-1024') # ๋ชจ๋ธ ๊ฒฝ๋กœ๋ฅผ ์ ์ ˆํ•˜๊ฒŒ ์ˆ˜์ •ํ•˜์„ธ์š”.
# ๋ชจ๋ธ ์ž…๋ ฅ ํฌ๊ธฐ๋ฅผ ํ™•์ธํ•ฉ๋‹ˆ๋‹ค.
input_size = model.input_shape[1:3]
# ๋ชจ๋ธ ์˜ˆ์ธก ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
def classify_image(img):
# ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ ์ž…๋ ฅ ํฌ๊ธฐ์— ๋งž๊ฒŒ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
img = img.resize(input_size)
img_array = np.array(img) / 255.0 # ์ด๋ฏธ์ง€๋ฅผ 0์—์„œ 1 ์‚ฌ์ด๋กœ ์ •๊ทœํ™”ํ•ฉ๋‹ˆ๋‹ค.
img_array = np.expand_dims(img_array, axis=0) # ๋ฐฐ์น˜ ์ฐจ์›์„ ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
# ๋ชจ๋ธ๋กœ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
predictions = model.predict(img_array)
# ์˜ˆ์ธก ๊ฒฐ๊ณผ ์ค‘์—์„œ ๊ฐ€์žฅ ๋†’์€ ํ™•๋ฅ ์„ ๊ฐ€์ง„ ํด๋ž˜์Šค๋ฅผ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.
predicted_label = np.argmax(predictions)
# ๋ผ๋ฒจ์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
return predicted_label
# Gradio UI๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
iface = gr.Interface(fn=classify_image, inputs="image", outputs="label", live=True)
# Gradio UI๋ฅผ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.
iface.launch()