dakkoong commited on
Commit
fcc3d15
ยท
1 Parent(s): 618ba48

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -10
app.py CHANGED
@@ -1,28 +1,24 @@
1
  import gradio as gr
2
  import numpy as np
3
  from PIL import Image
4
- import tensorflow as tf
5
  from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
6
 
 
7
  feature_extractor = SegformerFeatureExtractor.from_pretrained(
8
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
9
-
10
  model = TFSegformerForSemanticSegmentation.from_pretrained(
11
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
12
 
13
-
14
  # ๋ชจ๋ธ ์˜ˆ์ธก ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
15
  def classify_image(img):
16
- # ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ ์ž…๋ ฅ ํฌ๊ธฐ์— ๋งž๊ฒŒ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
17
- img = img.resize(input_size)
18
- img_array = np.array(img) / 255.0 # ์ด๋ฏธ์ง€๋ฅผ 0์—์„œ 1 ์‚ฌ์ด๋กœ ์ •๊ทœํ™”ํ•ฉ๋‹ˆ๋‹ค.
19
- img_array = np.expand_dims(img_array, axis=0) # ๋ฐฐ์น˜ ์ฐจ์›์„ ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
20
-
21
  # ๋ชจ๋ธ๋กœ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
22
- predictions = model.predict(img_array)
23
 
24
  # ์˜ˆ์ธก ๊ฒฐ๊ณผ ์ค‘์—์„œ ๊ฐ€์žฅ ๋†’์€ ํ™•๋ฅ ์„ ๊ฐ€์ง„ ํด๋ž˜์Šค๋ฅผ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.
25
- predicted_label = np.argmax(predictions)
26
 
27
  # ๋ผ๋ฒจ์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
28
  return predicted_label
 
1
  import gradio as gr
2
  import numpy as np
3
  from PIL import Image
 
4
  from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
5
 
6
+ # Segformer ๋ชจ๋ธ ๋ฐ feature extractor ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
7
  feature_extractor = SegformerFeatureExtractor.from_pretrained(
8
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
 
9
  model = TFSegformerForSemanticSegmentation.from_pretrained(
10
  "nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
11
 
 
12
  # ๋ชจ๋ธ ์˜ˆ์ธก ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
13
  def classify_image(img):
14
+ # ์ด๋ฏธ์ง€๋ฅผ ์ „์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
15
+ inputs = feature_extractor(images=img, return_tensors="tf")
16
+
 
 
17
  # ๋ชจ๋ธ๋กœ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
18
+ predictions = model(**inputs)
19
 
20
  # ์˜ˆ์ธก ๊ฒฐ๊ณผ ์ค‘์—์„œ ๊ฐ€์žฅ ๋†’์€ ํ™•๋ฅ ์„ ๊ฐ€์ง„ ํด๋ž˜์Šค๋ฅผ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.
21
+ predicted_label = tf.argmax(predictions.logits[0], axis=-1).numpy()
22
 
23
  # ๋ผ๋ฒจ์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
24
  return predicted_label