Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,24 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
-
import tensorflow as tf
|
5 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
6 |
|
|
|
7 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
8 |
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
9 |
-
|
10 |
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
11 |
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
12 |
|
13 |
-
|
14 |
# ๋ชจ๋ธ ์์ธก ํจ์๋ฅผ ์ ์ํฉ๋๋ค.
|
15 |
def classify_image(img):
|
16 |
-
# ์ด๋ฏธ์ง๋ฅผ
|
17 |
-
|
18 |
-
|
19 |
-
img_array = np.expand_dims(img_array, axis=0) # ๋ฐฐ์น ์ฐจ์์ ์ถ๊ฐํฉ๋๋ค.
|
20 |
-
|
21 |
# ๋ชจ๋ธ๋ก ์์ธก์ ์ํํฉ๋๋ค.
|
22 |
-
predictions = model
|
23 |
|
24 |
# ์์ธก ๊ฒฐ๊ณผ ์ค์์ ๊ฐ์ฅ ๋์ ํ๋ฅ ์ ๊ฐ์ง ํด๋์ค๋ฅผ ์ ํํฉ๋๋ค.
|
25 |
-
predicted_label =
|
26 |
|
27 |
# ๋ผ๋ฒจ์ ๋ฐํํฉ๋๋ค.
|
28 |
return predicted_label
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
|
|
4 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
5 |
|
6 |
+
# Segformer ๋ชจ๋ธ ๋ฐ feature extractor ๋ถ๋ฌ์ค๊ธฐ
|
7 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
8 |
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
|
|
9 |
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
10 |
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
11 |
|
|
|
12 |
# ๋ชจ๋ธ ์์ธก ํจ์๋ฅผ ์ ์ํฉ๋๋ค.
|
13 |
def classify_image(img):
|
14 |
+
# ์ด๋ฏธ์ง๋ฅผ ์ ์ฒ๋ฆฌํฉ๋๋ค.
|
15 |
+
inputs = feature_extractor(images=img, return_tensors="tf")
|
16 |
+
|
|
|
|
|
17 |
# ๋ชจ๋ธ๋ก ์์ธก์ ์ํํฉ๋๋ค.
|
18 |
+
predictions = model(**inputs)
|
19 |
|
20 |
# ์์ธก ๊ฒฐ๊ณผ ์ค์์ ๊ฐ์ฅ ๋์ ํ๋ฅ ์ ๊ฐ์ง ํด๋์ค๋ฅผ ์ ํํฉ๋๋ค.
|
21 |
+
predicted_label = tf.argmax(predictions.logits[0], axis=-1).numpy()
|
22 |
|
23 |
# ๋ผ๋ฒจ์ ๋ฐํํฉ๋๋ค.
|
24 |
return predicted_label
|