Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
processor = AutoProcessor.from_pretrained(daliavanilla/BLIP-Radiology-model)
|
4 |
+
model = BlipForConditionalGeneration.from_pretrained(daliavanilla/BLIP-Radiology-model)
|
5 |
+
|
6 |
+
# Define the prediction function
|
7 |
+
def generate_caption(image):
|
8 |
+
# Process the image
|
9 |
+
image = Image.fromarray(image)
|
10 |
+
#inputs = tokenizer(image, return_tensors="pt")
|
11 |
+
inputs = processor(images=image, return_tensors="pt")#.to(device)
|
12 |
+
pixel_values = inputs.pixel_values
|
13 |
+
|
14 |
+
# Generate caption
|
15 |
+
generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
|
16 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
17 |
+
|
18 |
+
return generated_caption
|
19 |
+
|
20 |
+
# Define the Gradio interface
|
21 |
+
interface = gr.Interface(
|
22 |
+
fn=generate_caption,
|
23 |
+
inputs=gr.Image(),
|
24 |
+
outputs=gr.Textbox(),
|
25 |
+
live=True
|
26 |
+
)
|
27 |
+
|
28 |
+
# Launch the Gradio interface
|
29 |
+
interface.launch()
|