File size: 7,011 Bytes
02e998a
580daa1
02e998a
580daa1
02e998a
 
 
 
 
 
f88bb49
02e998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae2699
02e998a
 
 
 
 
 
 
 
 
 
 
3ed4e4e
02e998a
 
 
e586365
02e998a
 
e586365
02e998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed4e4e
02e998a
 
 
 
 
3ed4e4e
02e998a
 
3ed4e4e
02e998a
 
 
 
 
 
 
 
 
 
 
 
 
f88bb49
02e998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f88bb49
 
02e998a
 
3ed4e4e
02e998a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import streamlit as st
from PIL import Image
from model_utils import BugClassifier, get_severity_prediction

# Page configuration
st.set_page_config(
    page_title="Bug-O-Scope πŸ”πŸž",
    page_icon="πŸ”",
    layout="wide"
)

# Initialize session state for model
@st.cache_resource
def load_model():
    try:
        print("Loading model...")
        model = BugClassifier()
        print("Model loaded successfully")
        return model
    except Exception as e:
        print(f"Error loading model: {str(e)}")
        return None

# Ensure model is loaded
if 'model' not in st.session_state:
    st.session_state.model = load_model()

def main():
    # Header
    st.title("Bug-O-Scope πŸ”πŸž")
    st.markdown("""
    Welcome to Bug-O-Scope! Upload a picture of an insect to learn more about it.
    This educational tool helps you identify bugs and understand their role in our ecosystem.
    """)

    # Sidebar
    st.sidebar.header("About Bug-O-Scope")
    st.sidebar.markdown("""
    Bug-O-Scope is an AI-powered tool that helps you:
    * πŸ” Identify insects from photos
    * πŸ“š Learn about different species
    * 🌍 Understand their ecological impact
    * πŸ”¬ Compare different insects
    """)

    # Check if model loaded successfully
    if st.session_state.model is None:
        st.error("Error: Model failed to load. Please try refreshing the page.")
        return

    # Main content
    tab1, tab2 = st.tabs(["Single Bug Analysis", "Bug Comparison"])

    with tab1:
        single_bug_analysis()

    with tab2:
        compare_bugs()

def single_bug_analysis():
    """Handle single bug analysis"""
    uploaded_file = st.file_uploader("Upload a bug photo", type=['png', 'jpg', 'jpeg'], key="single")
    
    if uploaded_file:
        try:
            # Load and display image
            image = Image.open(uploaded_file)
            col1, col2 = st.columns(2)
            
            with col1:
                st.image(image, caption="Uploaded Image", use_container_width=True)
            
            with col2:
                with st.spinner("Analyzing your bug..."):
                    # Get predictions
                    prediction, confidence = st.session_state.model.predict(image)
                    print(f"Prediction: {prediction}, Confidence: {confidence}")
                    
                    st.success("Analysis Complete!")
                    st.markdown("### Identified Species")
                    st.markdown(f"**{prediction}**")
                    st.markdown(f"Confidence: {confidence:.2f}%")
                    
                    # Only show ecological impact for known insects
                    if prediction != "Unknown Insect" and prediction != "Error Processing Image":
                        severity = get_severity_prediction(prediction)
                        st.markdown("### Ecological Impact")
                        severity_color = {
                            "Low": "green",
                            "Medium": "orange",
                            "High": "red",
                            "Unknown": "gray"
                        }
                        st.markdown(
                            f"Severity: <span style='color: {severity_color[severity]}'>{severity}</span>", 
                            unsafe_allow_html=True
                        )

            # Display species information
            if prediction != "Unknown Insect" and prediction != "Error Processing Image":
                st.markdown("### About This Species")
                species_info = st.session_state.model.get_species_info(prediction)
                st.markdown(species_info)
                
                # Display visualization
                st.markdown("### Feature Highlights")
                gradcam = st.session_state.model.get_gradcam(image)
                st.image(gradcam, caption="Important Features", use_container_width=True)
            
        except Exception as e:
            st.error(f"Error processing image: {str(e)}")
            st.info("Please try uploading a different image.")

def compare_bugs():
    """Handle bug comparison"""
    col1, col2 = st.columns(2)
    
    with col1:
        file1 = st.file_uploader("Upload first bug photo", type=['png', 'jpg', 'jpeg'], key="compare1")
        if file1:
            try:
                image1 = Image.open(file1)
                st.image(image1, caption="First Bug", use_container_width=True)
            except Exception as e:
                st.error(f"Error loading first image: {str(e)}")
                return
            
    with col2:
        file2 = st.file_uploader("Upload second bug photo", type=['png', 'jpg', 'jpeg'], key="compare2")
        if file2:
            try:
                image2 = Image.open(file2)
                st.image(image2, caption="Second Bug", use_container_width=True)
            except Exception as e:
                st.error(f"Error loading second image: {str(e)}")
                return
    
    if file1 and file2:
        try:
            with st.spinner("Generating comparison..."):
                # Get predictions
                pred1, conf1 = st.session_state.model.predict(image1)
                pred2, conf2 = st.session_state.model.predict(image2)
                
                if pred1 not in ["Unknown Insect", "Error Processing Image"] and \
                   pred2 not in ["Unknown Insect", "Error Processing Image"]:
                    
                    # Display results
                    st.markdown("### Comparison Results")
                    comp_col1, comp_col2 = st.columns(2)
                    
                    with comp_col1:
                        st.markdown(f"**Species 1**: {pred1}")
                        st.markdown(f"Confidence: {conf1:.2f}%")
                        gradcam1 = st.session_state.model.get_gradcam(image1)
                        st.image(gradcam1, caption="Feature Highlights - Bug 1", use_container_width=True)
                        
                    with comp_col2:
                        st.markdown(f"**Species 2**: {pred2}")
                        st.markdown(f"Confidence: {conf2:.2f}%")
                        gradcam2 = st.session_state.model.get_gradcam(image2)
                        st.image(gradcam2, caption="Feature Highlights - Bug 2", use_container_width=True)
                    
                    # Display comparison
                    st.markdown("### Key Differences")
                    st.markdown(st.session_state.model.get_species_info(pred1))
                    st.markdown(st.session_state.model.get_species_info(pred2))
                else:
                    st.warning("Unable to generate meaningful comparison due to low confidence predictions.")
                
        except Exception as e:
            st.error(f"Error comparing images: {str(e)}")
            st.info("Please try uploading different images or try again.")

if __name__ == "__main__":
    main()