Spaces:
Sleeping
Sleeping
File size: 6,109 Bytes
117f15d 37f5146 117f15d 37f5146 117f15d 37f5146 22e05ad 37f5146 22e05ad 37f5146 117f15d 37f5146 117f15d 22e05ad 37f5146 117f15d 22e05ad 37f5146 22e05ad 117f15d 37f5146 117f15d 22e05ad 117f15d 22e05ad 117f15d 22e05ad 117f15d 22e05ad 37f5146 22e05ad 117f15d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import streamlit as st
from PIL import Image
import numpy as np
from model_utils import BugClassifier, get_severity_prediction
from transformers import AutoFeatureExtractor
# Page configuration
st.set_page_config(
page_title="Bug-O-Scope ππ",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize session state
@st.cache_resource
def load_model():
try:
return BugClassifier(), AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None, None
if 'model' not in st.session_state:
st.session_state.model, st.session_state.feature_extractor = load_model()
def main():
# Header
st.title("Bug-O-Scope ππ")
st.markdown("""
Welcome to Bug-O-Scope! Upload a picture of an insect to learn more about it.
This educational tool helps you identify bugs and understand their role in our ecosystem.
""")
# Sidebar
st.sidebar.header("About Bug-O-Scope")
st.sidebar.markdown("""
Bug-O-Scope is an AI-powered tool that helps you:
* π Identify insects from photos
* π Learn about different species
* π Understand their ecological impact
* π¬ Compare different insects
""")
# Main content
tab1, tab2 = st.tabs(["Single Bug Analysis", "Bug Comparison"])
with tab1:
single_bug_analysis()
with tab2:
compare_bugs()
def single_bug_analysis():
"""Handle single bug analysis"""
uploaded_file = st.file_uploader("Upload a bug photo", type=['png', 'jpg', 'jpeg'], key="single")
if uploaded_file:
try:
image = Image.open(uploaded_file)
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Uploaded Image", use_container_width=True)
with col2:
with st.spinner("Analyzing your bug..."):
# Get predictions
prediction, confidence = st.session_state.model.predict(image)
severity = get_severity_prediction(prediction)
st.success("Analysis Complete!")
st.markdown(f"### Identified Species")
st.markdown(f"**{prediction}**")
st.markdown(f"Confidence: {confidence:.2f}%")
st.markdown("### Ecological Impact")
severity_color = {
"Low": "green",
"Medium": "orange",
"High": "red"
}
st.markdown(
f"Severity: <span style='color: {severity_color[severity]}'>{severity}</span>",
unsafe_allow_html=True
)
# Generate and display species information
st.markdown("### About This Species")
species_info = st.session_state.model.get_species_info(prediction)
st.markdown(species_info)
# Display Grad-CAM visualization
st.markdown("### Feature Highlights")
gradcam = st.session_state.model.get_gradcam(image)
st.image(gradcam, caption="Important Features", use_container_width=True)
except Exception as e:
st.error(f"Error processing image: {str(e)}")
st.info("Please try uploading a different image.")
def compare_bugs():
"""Handle bug comparison"""
col1, col2 = st.columns(2)
with col1:
file1 = st.file_uploader("Upload first bug photo", type=['png', 'jpg', 'jpeg'], key="compare1")
if file1:
try:
image1 = Image.open(file1)
st.image(image1, caption="First Bug", use_container_width=True)
except Exception as e:
st.error(f"Error loading first image: {str(e)}")
return
with col2:
file2 = st.file_uploader("Upload second bug photo", type=['png', 'jpg', 'jpeg'], key="compare2")
if file2:
try:
image2 = Image.open(file2)
st.image(image2, caption="Second Bug", use_container_width=True)
except Exception as e:
st.error(f"Error loading second image: {str(e)}")
return
if file1 and file2:
try:
with st.spinner("Generating comparison..."):
# Get predictions for both images
pred1, conf1 = st.session_state.model.predict(image1)
pred2, conf2 = st.session_state.model.predict(image2)
# Generate Grad-CAM visualizations
gradcam1 = st.session_state.model.get_gradcam(image1)
gradcam2 = st.session_state.model.get_gradcam(image2)
# Display results
st.markdown("### Comparison Results")
comp_col1, comp_col2 = st.columns(2)
with comp_col1:
st.markdown(f"**Species 1**: {pred1}")
st.markdown(f"Confidence: {conf1:.2f}%")
st.image(gradcam1, caption="Feature Highlights - Bug 1", use_container_width=True)
with comp_col2:
st.markdown(f"**Species 2**: {pred2}")
st.markdown(f"Confidence: {conf2:.2f}%")
st.image(gradcam2, caption="Feature Highlights - Bug 2", use_container_width=True)
# Display comparison information
st.markdown("### Key Differences")
differences = st.session_state.model.compare_species(pred1, pred2)
st.markdown(differences)
except Exception as e:
st.error(f"Error comparing images: {str(e)}")
st.info("Please try uploading different images or try again.")
if __name__ == "__main__":
main() |