Spaces:
Runtime error
Runtime error
Damian Stewart
commited on
Commit
·
6dc9635
1
Parent(s):
5329ade
batching sample generation and cancellation support
Browse files
app.py
CHANGED
|
@@ -76,7 +76,7 @@ class Demo:
|
|
| 76 |
label="Seed",
|
| 77 |
value=42
|
| 78 |
)
|
| 79 |
-
with gr.Row(
|
| 80 |
self.img_width_infr = gr.Slider(
|
| 81 |
label="Image width",
|
| 82 |
minimum=256,
|
|
@@ -92,7 +92,7 @@ class Demo:
|
|
| 92 |
step=64
|
| 93 |
)
|
| 94 |
|
| 95 |
-
with gr.Row(
|
| 96 |
self.model_dropdown = gr.Dropdown(
|
| 97 |
label="ESD Model",
|
| 98 |
choices= list(model_map.keys()),
|
|
@@ -152,6 +152,15 @@ class Demo:
|
|
| 152 |
info="Image size for training, should match the model's native image size"
|
| 153 |
)
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
self.prompt_input = gr.Text(
|
| 156 |
placeholder="Enter prompt...",
|
| 157 |
label="Prompt to Erase",
|
|
@@ -313,6 +322,7 @@ class Demo:
|
|
| 313 |
self.train_use_gradient_checkpointing_input,
|
| 314 |
self.train_seed_input,
|
| 315 |
self.train_save_every_input,
|
|
|
|
| 316 |
self.train_validation_prompts,
|
| 317 |
self.train_sample_positive_prompts,
|
| 318 |
self.train_sample_negative_prompts,
|
|
@@ -322,7 +332,8 @@ class Demo:
|
|
| 322 |
)
|
| 323 |
self.train_cancel_button.click(self.cancel_training,
|
| 324 |
inputs=[],
|
| 325 |
-
outputs=[self.train_cancel_button]
|
|
|
|
| 326 |
|
| 327 |
self.export_button.click(self.export, inputs = [
|
| 328 |
self.model_dropdown_export,
|
|
@@ -340,12 +351,14 @@ class Demo:
|
|
| 340 |
return [self.model_dropdown.update(choices=list(model_map.keys()), value=current_model_name)]
|
| 341 |
|
| 342 |
def cancel_training(self):
|
| 343 |
-
|
| 344 |
-
|
|
|
|
|
|
|
| 345 |
|
| 346 |
def train(self, repo_id_or_path, img_size, prompt, train_method, neg_guidance, iterations, lr,
|
| 347 |
use_adamw8bit=True, use_xformers=False, use_amp=False, use_gradient_checkpointing=False,
|
| 348 |
-
seed=-1, save_every=-1,
|
| 349 |
validation_prompts: str=None, sample_positive_prompts: str=None, sample_negative_prompts: str=None, validate_every_n_steps=-1,
|
| 350 |
pbar=gr.Progress(track_tqdm=True)):
|
| 351 |
"""
|
|
@@ -373,8 +386,6 @@ class Demo:
|
|
| 373 |
if self.training:
|
| 374 |
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
|
| 375 |
|
| 376 |
-
train.training_should_cancel = False
|
| 377 |
-
|
| 378 |
print(f"Training {repo_id_or_path} at {img_size} to remove '{prompt}'.")
|
| 379 |
print(f" {train_method}, negative guidance {neg_guidance}, lr {lr}, {iterations} iterations.")
|
| 380 |
print(f" {'✅' if use_gradient_checkpointing else '❌'} gradient checkpointing")
|
|
@@ -403,8 +414,8 @@ class Demo:
|
|
| 403 |
break
|
| 404 |
# repeat until a not-in-use path is found
|
| 405 |
|
| 406 |
-
validation_prompts = [] if validation_prompts is None else validation_prompts.split('\n')
|
| 407 |
-
sample_positive_prompts = [] if sample_positive_prompts is None else sample_positive_prompts.split('\n')
|
| 408 |
sample_negative_prompts = [] if sample_negative_prompts is None else sample_negative_prompts.split('\n')
|
| 409 |
print(f"validation prompts: {validation_prompts}")
|
| 410 |
print(f"sample positive prompts: {sample_positive_prompts}")
|
|
@@ -413,9 +424,11 @@ class Demo:
|
|
| 413 |
try:
|
| 414 |
self.training = True
|
| 415 |
self.train_cancel_button.update(interactive=True)
|
|
|
|
| 416 |
save_path = train(repo_id_or_path, img_size, prompt, modules, frozen, iterations, neg_guidance, lr, save_path,
|
| 417 |
use_adamw8bit, use_xformers, use_amp, use_gradient_checkpointing,
|
| 418 |
seed=int(seed), save_every_n_steps=int(save_every),
|
|
|
|
| 419 |
validate_every_n_steps=validate_every_n_steps, validation_prompts=validation_prompts,
|
| 420 |
sample_positive_prompts=sample_positive_prompts, sample_negative_prompts=sample_negative_prompts)
|
| 421 |
if save_path is None:
|
|
|
|
| 76 |
label="Seed",
|
| 77 |
value=42
|
| 78 |
)
|
| 79 |
+
with gr.Row():
|
| 80 |
self.img_width_infr = gr.Slider(
|
| 81 |
label="Image width",
|
| 82 |
minimum=256,
|
|
|
|
| 92 |
step=64
|
| 93 |
)
|
| 94 |
|
| 95 |
+
with gr.Row():
|
| 96 |
self.model_dropdown = gr.Dropdown(
|
| 97 |
label="ESD Model",
|
| 98 |
choices= list(model_map.keys()),
|
|
|
|
| 152 |
info="Image size for training, should match the model's native image size"
|
| 153 |
)
|
| 154 |
|
| 155 |
+
self.train_sample_batch_size_input = gr.Slider(
|
| 156 |
+
value=1,
|
| 157 |
+
step=1,
|
| 158 |
+
minimum=1,
|
| 159 |
+
maximum=32,
|
| 160 |
+
label="Sample generation batch size",
|
| 161 |
+
info="Batch size for sample generation, larger needs more VRAM"
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
self.prompt_input = gr.Text(
|
| 165 |
placeholder="Enter prompt...",
|
| 166 |
label="Prompt to Erase",
|
|
|
|
| 322 |
self.train_use_gradient_checkpointing_input,
|
| 323 |
self.train_seed_input,
|
| 324 |
self.train_save_every_input,
|
| 325 |
+
self.train_sample_batch_size_input,
|
| 326 |
self.train_validation_prompts,
|
| 327 |
self.train_sample_positive_prompts,
|
| 328 |
self.train_sample_negative_prompts,
|
|
|
|
| 332 |
)
|
| 333 |
self.train_cancel_button.click(self.cancel_training,
|
| 334 |
inputs=[],
|
| 335 |
+
outputs=[self.train_cancel_button],
|
| 336 |
+
cancels=[train_event])
|
| 337 |
|
| 338 |
self.export_button.click(self.export, inputs = [
|
| 339 |
self.model_dropdown_export,
|
|
|
|
| 351 |
return [self.model_dropdown.update(choices=list(model_map.keys()), value=current_model_name)]
|
| 352 |
|
| 353 |
def cancel_training(self):
|
| 354 |
+
if self.training:
|
| 355 |
+
training_should_cancel.release()
|
| 356 |
+
print("cancellation requested...")
|
| 357 |
+
return [gr.update(value="Cancelling...", interactive=True)]
|
| 358 |
|
| 359 |
def train(self, repo_id_or_path, img_size, prompt, train_method, neg_guidance, iterations, lr,
|
| 360 |
use_adamw8bit=True, use_xformers=False, use_amp=False, use_gradient_checkpointing=False,
|
| 361 |
+
seed=-1, save_every=-1, sample_batch_size=1,
|
| 362 |
validation_prompts: str=None, sample_positive_prompts: str=None, sample_negative_prompts: str=None, validate_every_n_steps=-1,
|
| 363 |
pbar=gr.Progress(track_tqdm=True)):
|
| 364 |
"""
|
|
|
|
| 386 |
if self.training:
|
| 387 |
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
|
| 388 |
|
|
|
|
|
|
|
| 389 |
print(f"Training {repo_id_or_path} at {img_size} to remove '{prompt}'.")
|
| 390 |
print(f" {train_method}, negative guidance {neg_guidance}, lr {lr}, {iterations} iterations.")
|
| 391 |
print(f" {'✅' if use_gradient_checkpointing else '❌'} gradient checkpointing")
|
|
|
|
| 414 |
break
|
| 415 |
# repeat until a not-in-use path is found
|
| 416 |
|
| 417 |
+
validation_prompts = [] if validation_prompts is None else [p for p in validation_prompts.split('\n') if len(p)>0]
|
| 418 |
+
sample_positive_prompts = [] if sample_positive_prompts is None else [p for p in sample_positive_prompts.split('\n') if len(p)>0]
|
| 419 |
sample_negative_prompts = [] if sample_negative_prompts is None else sample_negative_prompts.split('\n')
|
| 420 |
print(f"validation prompts: {validation_prompts}")
|
| 421 |
print(f"sample positive prompts: {sample_positive_prompts}")
|
|
|
|
| 424 |
try:
|
| 425 |
self.training = True
|
| 426 |
self.train_cancel_button.update(interactive=True)
|
| 427 |
+
batch_size = 1 # other batch sizes are non-functional
|
| 428 |
save_path = train(repo_id_or_path, img_size, prompt, modules, frozen, iterations, neg_guidance, lr, save_path,
|
| 429 |
use_adamw8bit, use_xformers, use_amp, use_gradient_checkpointing,
|
| 430 |
seed=int(seed), save_every_n_steps=int(save_every),
|
| 431 |
+
batch_size=int(batch_size), sample_batch_size=int(sample_batch_size),
|
| 432 |
validate_every_n_steps=validate_every_n_steps, validation_prompts=validation_prompts,
|
| 433 |
sample_positive_prompts=sample_positive_prompts, sample_negative_prompts=sample_negative_prompts)
|
| 434 |
if save_path is None:
|
train.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import os.path
|
| 2 |
import random
|
|
|
|
| 3 |
|
| 4 |
from accelerate.utils import set_seed
|
| 5 |
from diffusers import StableDiffusionPipeline
|
|
@@ -15,7 +16,7 @@ from isolate_rng import isolate_rng
|
|
| 15 |
from memory_efficiency import MemoryEfficiencyWrapper
|
| 16 |
from torch.utils.tensorboard import SummaryWriter
|
| 17 |
|
| 18 |
-
training_should_cancel =
|
| 19 |
|
| 20 |
def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
| 21 |
validation_embeddings: torch.FloatTensor,
|
|
@@ -24,8 +25,11 @@ def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
|
| 24 |
logger: SummaryWriter, use_amp: bool,
|
| 25 |
global_step: int,
|
| 26 |
validation_seed: int = 555,
|
|
|
|
|
|
|
| 27 |
):
|
| 28 |
print("validating...")
|
|
|
|
| 29 |
with isolate_rng(include_cuda=True), torch.no_grad():
|
| 30 |
set_seed(validation_seed)
|
| 31 |
criteria = torch.nn.MSELoss()
|
|
@@ -33,14 +37,14 @@ def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
|
| 33 |
val_count = 5
|
| 34 |
|
| 35 |
nsteps=50
|
| 36 |
-
|
| 37 |
|
| 38 |
-
for i in tqdm(range(
|
| 39 |
-
if training_should_cancel:
|
| 40 |
print("cancel requested, bailing")
|
| 41 |
return
|
| 42 |
accumulated_loss = None
|
| 43 |
-
this_validation_embeddings = validation_embeddings[i*2:i*2
|
| 44 |
for j in range(val_count):
|
| 45 |
iteration = random.randint(1, nsteps)
|
| 46 |
diffused_latents = get_diffused_latents(diffuser, nsteps, this_validation_embeddings, iteration, use_amp)
|
|
@@ -55,12 +59,11 @@ def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
|
| 55 |
loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
|
| 56 |
accumulated_loss = (accumulated_loss or 0) + loss.item()
|
| 57 |
logger.add_scalar(f"loss/val_{i}", accumulated_loss/val_count, global_step=global_step)
|
| 58 |
-
pbar.step()
|
| 59 |
|
| 60 |
-
|
| 61 |
-
for i in tqdm(range(0,
|
| 62 |
-
print(f'making sample {i}...')
|
| 63 |
-
if training_should_cancel:
|
| 64 |
print("cancel requested, bailing")
|
| 65 |
return
|
| 66 |
with finetuner:
|
|
@@ -72,10 +75,16 @@ def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
|
| 72 |
safety_checker=None,
|
| 73 |
feature_extractor=None,
|
| 74 |
requires_safety_checker=False)
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
num_inference_steps=50)
|
| 77 |
-
|
| 78 |
-
|
|
|
|
| 79 |
|
| 80 |
"""
|
| 81 |
with finetuner, torch.cuda.amp.autocast(enabled=use_amp):
|
|
@@ -90,6 +99,7 @@ def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
|
| 90 |
|
| 91 |
def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations, negative_guidance, lr, save_path,
|
| 92 |
use_adamw8bit=True, use_xformers=True, use_amp=True, use_gradient_checkpointing=False, seed=-1,
|
|
|
|
| 93 |
save_every_n_steps=-1, validate_every_n_steps=-1,
|
| 94 |
validation_prompts=[], sample_positive_prompts=[], sample_negative_prompts=[]):
|
| 95 |
|
|
@@ -101,8 +111,6 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
| 101 |
neutral_latents = None
|
| 102 |
positive_latents = None
|
| 103 |
|
| 104 |
-
global training_should_cancel
|
| 105 |
-
|
| 106 |
nsteps = 50
|
| 107 |
print(f"using img_size of {img_size}")
|
| 108 |
diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=repo_id_or_path, native_img_size=img_size).to('cuda')
|
|
@@ -135,6 +143,13 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
| 135 |
validation_embeddings = diffuser.get_cond_and_uncond_embeddings(validation_prompts, n_imgs=1)
|
| 136 |
sample_embeddings = diffuser.get_cond_and_uncond_embeddings(sample_positive_prompts, sample_negative_prompts, n_imgs=1)
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
#if use_amp:
|
| 139 |
# diffuser.vae = diffuser.vae.to(diffuser.vae.device, dtype=torch.float16)
|
| 140 |
|
|
@@ -151,14 +166,15 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
| 151 |
validation_embeddings=validation_embeddings,
|
| 152 |
sample_embeddings=sample_embeddings,
|
| 153 |
neutral_embeddings=neutral_text_embeddings,
|
| 154 |
-
logger=logger, use_amp=False, global_step=0
|
|
|
|
| 155 |
|
| 156 |
prev_losses = []
|
| 157 |
start_loss = None
|
| 158 |
max_prev_loss_count = 10
|
| 159 |
try:
|
| 160 |
for i in pbar:
|
| 161 |
-
if training_should_cancel:
|
| 162 |
print("cancel requested, bailing")
|
| 163 |
return None
|
| 164 |
|
|
@@ -210,7 +226,8 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
| 210 |
validation_embeddings=validation_embeddings,
|
| 211 |
sample_embeddings=sample_embeddings,
|
| 212 |
neutral_embeddings=neutral_text_embeddings,
|
| 213 |
-
logger=logger, use_amp=False, global_step=i
|
|
|
|
| 214 |
torch.save(finetuner.state_dict(), save_path)
|
| 215 |
return save_path
|
| 216 |
finally:
|
|
@@ -220,7 +237,7 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
| 220 |
|
| 221 |
def get_diffused_latents(diffuser, nsteps, text_embeddings, end_iteration, use_amp):
|
| 222 |
diffuser.set_scheduler_timesteps(nsteps)
|
| 223 |
-
latents = diffuser.get_initial_latents(
|
| 224 |
latents_steps, _ = diffuser.diffusion(
|
| 225 |
latents,
|
| 226 |
text_embeddings,
|
|
|
|
| 1 |
import os.path
|
| 2 |
import random
|
| 3 |
+
import multiprocessing
|
| 4 |
|
| 5 |
from accelerate.utils import set_seed
|
| 6 |
from diffusers import StableDiffusionPipeline
|
|
|
|
| 16 |
from memory_efficiency import MemoryEfficiencyWrapper
|
| 17 |
from torch.utils.tensorboard import SummaryWriter
|
| 18 |
|
| 19 |
+
training_should_cancel = multiprocessing.Semaphore(0)
|
| 20 |
|
| 21 |
def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
| 22 |
validation_embeddings: torch.FloatTensor,
|
|
|
|
| 25 |
logger: SummaryWriter, use_amp: bool,
|
| 26 |
global_step: int,
|
| 27 |
validation_seed: int = 555,
|
| 28 |
+
batch_size: int = 1,
|
| 29 |
+
sample_batch_size: int = 1 # might need to be smaller than batch_size
|
| 30 |
):
|
| 31 |
print("validating...")
|
| 32 |
+
assert batch_size==1, "batch_size != 1 not implemented work"
|
| 33 |
with isolate_rng(include_cuda=True), torch.no_grad():
|
| 34 |
set_seed(validation_seed)
|
| 35 |
criteria = torch.nn.MSELoss()
|
|
|
|
| 37 |
val_count = 5
|
| 38 |
|
| 39 |
nsteps=50
|
| 40 |
+
num_validation_batches = validation_embeddings.shape[0] // (batch_size*2)
|
| 41 |
|
| 42 |
+
for i in tqdm(range(num_validation_batches)):
|
| 43 |
+
if training_should_cancel.acquire(block=False):
|
| 44 |
print("cancel requested, bailing")
|
| 45 |
return
|
| 46 |
accumulated_loss = None
|
| 47 |
+
this_validation_embeddings = validation_embeddings[i*batch_size*2:(i+1)*batch_size*2]
|
| 48 |
for j in range(val_count):
|
| 49 |
iteration = random.randint(1, nsteps)
|
| 50 |
diffused_latents = get_diffused_latents(diffuser, nsteps, this_validation_embeddings, iteration, use_amp)
|
|
|
|
| 59 |
loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
|
| 60 |
accumulated_loss = (accumulated_loss or 0) + loss.item()
|
| 61 |
logger.add_scalar(f"loss/val_{i}", accumulated_loss/val_count, global_step=global_step)
|
|
|
|
| 62 |
|
| 63 |
+
num_sample_batches = sample_embeddings.shape[0] // (sample_batch_size*2)
|
| 64 |
+
for i in tqdm(range(0, num_sample_batches)):
|
| 65 |
+
print(f'making sample batch {i}...')
|
| 66 |
+
if training_should_cancel.acquire(block=False):
|
| 67 |
print("cancel requested, bailing")
|
| 68 |
return
|
| 69 |
with finetuner:
|
|
|
|
| 75 |
safety_checker=None,
|
| 76 |
feature_extractor=None,
|
| 77 |
requires_safety_checker=False)
|
| 78 |
+
batch_start = (i * sample_batch_size)*2
|
| 79 |
+
next_batch_start = batch_start + sample_batch_size*2 + 1
|
| 80 |
+
batch_negative_prompt_embeds = torch.cat([sample_embeddings[i+0:i+1] for i in range(batch_start, next_batch_start, 2)])
|
| 81 |
+
batch_prompt_embeds = torch.cat([sample_embeddings[i+1:i+2] for i in range(batch_start, next_batch_start, 2)])
|
| 82 |
+
images = pipeline(prompt_embeds=batch_prompt_embeds, #sample_embeddings[i*2+1:i*2+2],
|
| 83 |
+
negative_prompt_embeds=batch_negative_prompt_embeds, # sample_embeddings[i*2:i*2+1],
|
| 84 |
num_inference_steps=50)
|
| 85 |
+
for j in range(sample_batch_size):
|
| 86 |
+
image_tensor = transforms.ToTensor()(images.images[j])
|
| 87 |
+
logger.add_image(f"samples/{i*sample_batch_size+j}", img_tensor=image_tensor, global_step=global_step)
|
| 88 |
|
| 89 |
"""
|
| 90 |
with finetuner, torch.cuda.amp.autocast(enabled=use_amp):
|
|
|
|
| 99 |
|
| 100 |
def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations, negative_guidance, lr, save_path,
|
| 101 |
use_adamw8bit=True, use_xformers=True, use_amp=True, use_gradient_checkpointing=False, seed=-1,
|
| 102 |
+
batch_size=1, sample_batch_size=1,
|
| 103 |
save_every_n_steps=-1, validate_every_n_steps=-1,
|
| 104 |
validation_prompts=[], sample_positive_prompts=[], sample_negative_prompts=[]):
|
| 105 |
|
|
|
|
| 111 |
neutral_latents = None
|
| 112 |
positive_latents = None
|
| 113 |
|
|
|
|
|
|
|
| 114 |
nsteps = 50
|
| 115 |
print(f"using img_size of {img_size}")
|
| 116 |
diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=repo_id_or_path, native_img_size=img_size).to('cuda')
|
|
|
|
| 143 |
validation_embeddings = diffuser.get_cond_and_uncond_embeddings(validation_prompts, n_imgs=1)
|
| 144 |
sample_embeddings = diffuser.get_cond_and_uncond_embeddings(sample_positive_prompts, sample_negative_prompts, n_imgs=1)
|
| 145 |
|
| 146 |
+
for i, validation_prompt in enumerate(validation_prompts):
|
| 147 |
+
logger.add_text(f"val/{i}", f"validation prompt: \"{validation_prompt}\"")
|
| 148 |
+
for i in range(len(sample_positive_prompts)):
|
| 149 |
+
positive_prompt = sample_positive_prompts[i]
|
| 150 |
+
negative_prompt = "" if i >= len(sample_negative_prompts) else sample_negative_prompts[i]
|
| 151 |
+
logger.add_text(f"sample/{i}", f"sample prompt: \"{positive_prompt}\", negative: \"{negative_prompt}\"")
|
| 152 |
+
|
| 153 |
#if use_amp:
|
| 154 |
# diffuser.vae = diffuser.vae.to(diffuser.vae.device, dtype=torch.float16)
|
| 155 |
|
|
|
|
| 166 |
validation_embeddings=validation_embeddings,
|
| 167 |
sample_embeddings=sample_embeddings,
|
| 168 |
neutral_embeddings=neutral_text_embeddings,
|
| 169 |
+
logger=logger, use_amp=False, global_step=0,
|
| 170 |
+
batch_size=batch_size, sample_batch_size=sample_batch_size)
|
| 171 |
|
| 172 |
prev_losses = []
|
| 173 |
start_loss = None
|
| 174 |
max_prev_loss_count = 10
|
| 175 |
try:
|
| 176 |
for i in pbar:
|
| 177 |
+
if training_should_cancel.acquire(block=False):
|
| 178 |
print("cancel requested, bailing")
|
| 179 |
return None
|
| 180 |
|
|
|
|
| 226 |
validation_embeddings=validation_embeddings,
|
| 227 |
sample_embeddings=sample_embeddings,
|
| 228 |
neutral_embeddings=neutral_text_embeddings,
|
| 229 |
+
logger=logger, use_amp=False, global_step=i,
|
| 230 |
+
batch_size=batch_size, sample_batch_size=sample_batch_size)
|
| 231 |
torch.save(finetuner.state_dict(), save_path)
|
| 232 |
return save_path
|
| 233 |
finally:
|
|
|
|
| 237 |
|
| 238 |
def get_diffused_latents(diffuser, nsteps, text_embeddings, end_iteration, use_amp):
|
| 239 |
diffuser.set_scheduler_timesteps(nsteps)
|
| 240 |
+
latents = diffuser.get_initial_latents(len(text_embeddings)//2, n_prompts=1)
|
| 241 |
latents_steps, _ = diffuser.diffusion(
|
| 242 |
latents,
|
| 243 |
text_embeddings,
|